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Semiclassical quantization of KAM resonances in 
time-periodic systems 

B Mirbach and H J Korsch 
Fachbereich Physik, Universit5t Kalserslautem. D-67663 Kaiserslnutem, Germany 

Received 25 February 1994. in final form 27 June 1994 

Abstract. A semiclassical theory for the quasi-energy specmm of time-periodic system with 
accidenW classical resonances is presented. The primitive EBK quantum conditions for integrable 
systems are extended to multiply periodic flux tubes occuring in resonant systems. Replacing 
classical actions by appropriate differential operators in a classiul resonance Hamiltonian yields 
3 uniform quantization of states related to a classical resonance region. The derivation being 
general for time-periodic system unfolds the organization of the quasi-energy specmm reducing 
it to the spectrum of a single time-independent Hamillonian of one degree of freedom with 
additional rational shiits of fiw. In a firstader approximation lhe resonance Hami1toni.m is 
reduced to a pendulum leading to a differential equation of the Mathieu type for the quasi- 
energies. It is rigorously shown how panmeters of the differential equation can be drawn from 
classical dynamics. using the data of the 'essential' orbits in the resonance zone. i.e. stability 
coefficients and actions of hyperbolic and elliptic orbits as well as actions of homoclinic orbits 
The quasienergy spectrum of a forced quartic oscillvor is studied numerically and evaluated. 
Semiclassical quasibenergies related to a resonance of period three are comouted and coinoared 
with exact quantum mechanical eigenvalues. 

1. Introduction 

Extensive studies of dynamical systems during the last decades have shown that in generic 
Hamiltonian systems both regular and chaotic motion coexist. The complicated, but 
fascinating, phase-space structure of such systems has been inspected in great detail (see, 
e.g., [1,2]), at least for two-dimensional systems. The usual approach is to consider a 
perturbed integrable Hamiltonian 

H = H o ~ I i , 1 2 ~ + E H l ~ I I r 1 2 r ~ l , M ~  (1) 
where ( I I ,  I,, (01, M) denote the action-angle variables of the integrable system with 
Hamiltonian Ha. The phase space of the integrable system is entirely stratified by 
invariant tori specified by the actions I ] ,  12, which are constants of motion. The torus 
is parametrized by angles V I ,  (4 such that the motion on the torus is linear in time, i.e. 

= wif + (oi(O), i = 1,2, with frequencies 
aH  

wz(11,12)=- i = 1 , 2 .  a I ,  
A resonance corresponds to commensurable frequencies (ut, q) yielding a rational 

winding number, i.e. f2 = w l / y  = r / s ( r ,  s E N). 
The KAM theorem tells us that tori in the neighbourhood of a resonance r fs  are usually 

destroyed. In a surface of section, one finds a chain of s islands embedded in a stochastic 
layer. The centres of the islands are elliptic fixed points as a result of the intersection of 
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an s-periodic stable orbit with the surface of section. In between, one finds s hyperbolic 
fixed points, whose homoclinic intersections generate the chaotic motion surrounding the 
islands. The area of this stochastic band depends on the perturbation strength 6 and the 
denominator s of the frequency ratio (see, e.g.. [ I ,  31). Although the resonant tori are 
dense in phase space there remains-for sufficiently small <-a finite phase space volume 
occupied by invariant tori since the width of the island chains declines sufficiently rapidly 
with its order s (a typical example are the Poincari intersections shown in figure 1). As a 
consequence, these resonances can be considered as isolated in the limit of small E .  

A description of the motion in the vicinity of a resonance is achieved by transformation 
to a rotating coordinate frame [ 11. In this way the global resonant motion is separated from 
the slow relative motion, which allows for an adiabatic treatment. 

A first integrable approximation is obtained by averaging over the fast variable. As a 
result, one is left with a one-dimensional (time-independent) Hamiltonian which is periodic 
in the remaining angle variable with period h / s .  Especially for weak perturbations, this 
Hamiltonian is that of the pendulum [l. 4,5] ,  also referred to as the ‘standard Hamiltonian’ 
because it is generic, i.e. it appears typically in KAM systems independent of the particular 
Hamiltonian. The phase space in the vicinity of a resonance exhibits two types of motion, 
namely stable libration around elliptic fixed points and rotational motion above and below 
the islands separated by separatrix branches from the librational motion. 

The influence of isolated classical resonances on the energy spectrum has been studied 
by a number of authors. Avoided crossings, e.g. those which typically show up in plots of 
the eigenvalue spectrum versus a perturbation parameter, are related to isolated resonances in 
the classical dynamics [6-91. Primitive quantization rules for multiply periodic resonant flux 
tubes were presented [6,7, 1C-121 as well as uniform methods which allow for a continuation 
of the semiclassical quantization across the separatrix. Degeneracies, which might appear in 
primitive quantization due to discrete symmetries, are removed in this way and one obtains 
splittings of energy levels due to dynamical tunnelling [13] betnzeen resonant tori. 

Among other techniques, one method based on classical resonance theory is the 
replacement of the actions in the resonance Hamiltonian by differential operators [14, 6. 71. 
This uniform method seems to provide the best physical insight into the interrelation between 
isolated resonances and the energy spectrum and had been successfully applied in the study 
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of avoided crossings. 
Whereas these studies are all concerned with coupled oscillator systems, the present 

work will be devoted to time-periodic systems. By introducing an extended phase space, 
time-periodic Hamiltonian systems in one dimension can be treated as two-dimensional 
autonomous systems. Within this approach they form a particular subclass of two- 
dimensional systems. Therefore, quantization rules for time-periodic systems can be drawn 
from the well known EBK rules for autonomous systems as demonstrated by Breuer and 
Holthaus [15]. Bensch et a/ [I61 developed a quantization method based on Paincar6 
surfaces of section, which allows us to perform the quantization in two independent steps, 
in contrast to related methods for general two-dimensional systems. As we will show when 
briefly recapitulating this quantization theory in section 2, this is due to a separation of the 
classical quasi-energy function in the quantizing action variables. 

After a short overview of classical resonance theory in section 3, we will present a 
theory of the quasi-energy spectrum based on a semiclassical quantization of the resonance 
Hamiltonian. The basic ansatz for a uniform quantization is a replacement of the actions in 
the resonant Hamiltonian by differential operators in essentially the same way as done by 
Ozorio [7] and Uzer et a/ 161 in their studies of coupled oscillator systems. 

For the class of time-periodic systems, however, it will turn out that the quasi-energy 
spectrum can be reduced to the spectrum of a time-independent Hamiltonian with one degree 
of freedom. Additional rational shifts of hw, which are due to the boundary conditions in 
the rotating coordinate frame, then reproduce the quasi-energy spectrum of the original 
Hamiltonian. As a result, we obtain a general organization scheme of the quasi-energy 
spectrum in the vicinity of a classical resonance. 

In the pendulum approximation, also referred to as ‘centre-of-resonance approximation’ 
by other authors, uniform quantization leads to an eigenvalue equation of Mathieu form. 
In section 4, we derive expressions for the parameters of the Mathieu equation in terms of 
classical phase-space data and show how these data can be drawn from classical dynamics, 
independent of the underlying system. 

Uzer er al [6] had a similar idea to use data of the separatrix and additional quantized 
tori in order to predict the level splittings. Here we propose a different method, namely to 
use the data of the stable and unstable periodic orbit in addition to those of the separatrix. 
The separatrix data can be obtained from the action difference of homoclinic orbits and 
the unstable periodic orbit [17, 181. This allows the extension of the method to the generic 
case of non-isolated resonances disturbing each other so that the separatrix does not join 
smoothly any more but generates homoclinic intersections, which are the onset of a chaotic 
layer around the resonant islands. 

Moreover, in this way a step is made towards Gutzwiller’s trace formula [19]. Within 
this quantization theory, the energy eigenvalues appear as singularities in a sum over all 
periodic orbits, with the consequence that one needs, in principle, all periodic orbits in order 
to determine any eigenvalue precisely. This theory works very successfully for systems 
exhibiting hard chaos, i.e. systems allowing for a coding of periodic orbits such that only 
a few of them are necessary for quantization. For mixed systems, however, the Gutzwiller 
theory seems to be hard to apply. 

We will show how the uniform quantization, being based on the generic resonant 
dynamics, allows us to compute eigenvalues by using the data of the ‘essential’ classical 
orbits in the resonance zone. 

In section 5, we derive the primitive EBK quantization rules for resonant flux tubes based 
on geometric path considerations. Within this approach, the quasi-energy states localized 
on secondary tori inside the resonance reveal a very transparent structure representing the 
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limiting case where dynamical tunnelling between the tori is negligible. 
As an illustrative example we evaluate the quasi-energy spectrum of a periodically 

driven Duffing oscillator and compute explicitly quasi-energies related to a resonance of 
period three. 

B Mirbach and H J Korsch 

2. Quantization of time-periodic systems 

One way to achieve a semiclassical quantization of one-dimensional time-periodic systems 
is to increase the dimension by constructing an extended phase space i n  which the system 
appears to be time-independent, so that the EBK quantum conditions 

(3) 1 I , - -  p . d q = T z ( n i + p i )  n i E Z  i = l ,  . . . ,  N 
I - ;n i, 

for two-dimensional autonomous systems can be implemented. A comprehensive description 
of this theory can be found in [15,16]. Here, we give only a brief outline as far as necessary 
for the theory presented in the subsequent sections. 

By regarding I as a variable and introducing a conjugate canonical momentum p, ,  a 
new conserved Hamiltonian H, the quasi-energy function, is obtained: 

(4) 
Invariant surfaces in extended phase space ( p .  q ,  p, ,  t )  are topologically not two- 
dimensional tori but non-compact cylinders. In the case of a time-periodic system, however, 
one can regard f as an angle variable by identifying I and t + T with the corresponding 
frequency m = 2 n / T  being the constant driving frequency. In this way, the invariant 
cylinders form connected ton allowing for an implementation of quantum conditions (3). 
The natural choice of a surface of section is the plain defined by {I = 0 mod T ) .  We choose 
the loop yl lying in this plane, whereas yz is chosen as a path connecting a point ( p ,  q )  at 
time t = 0-with the same point at time r+T. After solving (4) for pt on the quasi-energy 
shell E = H ( q ,  p, I ,  p,) = constant, quantization conditions (3) adopt the form 

&P. 4.  P t .  f) = H ( P !  9.2) + P t .  

11 = & l , m '  = h ( n l +  $pi)  n1 E Z 

I z = -  d + - ~ = h n 2  nz E Z 
T (5) 

,I, J ,  2n 

with the P o i n c a r M m a n  form mL = p dq - Hdr. No Maslov index appears in the quantum 
condition for 12 since there is no turning point in  the time direction, i.e. it is always possible 
to choose yz such that pz = 0. 

The quantization can be pelformed in two steps. The quantization condition for I I  has 
to be fulfilled first, and the second condition in (5) determines the value of the quasi-energy 
yielding the typical Bnllouin zone structure of the quasi-energy spectrum: 

E., , .~ = -+ mi + hmnz . (6) 

H = Ol1I +WIZ - (L) (7) 
by transforming the integral over y~ into a repeated integral over yl and a path following 
a classical trajectory. Here, wi (i = 1,2) are the frequencies of the angle variables 
corresponding to the two actions, where the latter one is the constant driving frequency, 

In a preceding article [16] the quasi-energy function was rewritten as - 
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i.e. 02 = w ,  and ( L )  is the torus avejage of the Lagrangian which can also be written (and 
computed in practice) as the long-time average 

Equation (7) is also valid in the more general case of two-dimensional autonomous systems. 
For one-dimensional time-periodic systems, however, ( L }  is a function of 1, alone, such 
that the dependence of the quasi-energy function on the actions separates as 

(9) H" = h( l1)  + 0 1 2 .  

E,,,,, = fiw(n2 + ~ ( n l  + i w ) )  - ( L )  

This is the formal reason why the quantization can be performed in two separated steps as 
stated above. Inserting the quantization conditions (5) into (7) finally yields 

(10) 

These quasi-energies are the eigenvalues of the quantum Hamiltonian H ( q ,  t )  =G(q. t ) -  
&a, with time-periodic eigensolutions (note that p ,  in (4) has been replaced by the differ- 
ential operator of the conjugate variable, the time) 

(11) 
The transition operators for a ladder of periodic solutions (U,,,,,, n2 E Z) are a* = e*iorf, 
i.e. the solutions can be written as 

with frequency ratio C2 = W I / W .  U 

(&. t )  - %a,)ua$,n2 = E ~ > , ~ ~ u ~ , , ~ ~ .  

un,,"*(t) = u.,(t)e'""' (12) 

U,, (0 (13) Q (*) = e-G,tlfi 

with U,, = u , , , ~ .  Consequently, the solutions of the time-dependent Schrodinger equation 
can be represented as 

ni  

which is the well known Floquet form and the traditional way of introducing the concept 
of quasi-energies [ZO, 211. In this picture, the Brillouin zone structure of the quasi-energy 
spectrum appears as an ambiguity since each ladder of quasi-energies (E.,,,,, nz E Z] 
corresponds to a single solution an, only. 

3. Quantization of resonant dynamics 

3.1. Classical resonance theorj 

Classically, a description of the generic resonant motion with rational winding number 
51 = r / s  can be achieved by transforming the system to a rotating coordinate frame followed 
by an adiabatic treatment. A comprehensive description of this method can be found in 
the book by Lichtenberg and Lieberman [ 11. Here, we will only sketch it briefly and show 
how this transformation can be translated into quantum mechanics. The starting point is the 
transformation to a coordinate frame rotating with the resonance frequency w ]  = w2r / s .  
The 'time'-coordinate 9 2  is kept and a new variable (P; is introduced, which measures the 
slow deviation from resonance 

(14) 
r 

9; = 91 - ;92 9; = (P2 

with generating function 

(15) 
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yielding the transformation of the actions 
r 
S 

11 = 1; 12 = 1; - - I ; .  (16) 

The next step is to expand the perturbational Hamiltonian H I  in a Fourier series 

H~ = , r g n e * ( m ~ l t n n 2 )  (17) 
m.n 

(18) 

An integrable approximation to the Hamiltonian is then obtained by averaging over the fast 
variable (pi yielding 

i(mp; +(mr/s tn)?;) , = Hm.& 
m.n 

Y 
I 

(19) eim.?+$ AI = H-mr,ms 
m=O 

This approximation is vdid near the resonance, where 
Hamiltonian 

>> I@] 1 .  Since the averaged 

fi(1;, I;, 9;) = Ho(l;, I ; )  + <fit(I;, I ; ,  (pi) (20) 
is independent of (p;, the action 1; is a constanl of motion, the first term of a series expansion 
for an adiabatic invariant of Hamiltonian (1). In this way, the dynamics generated by the 
Hamiltonian is reduced to an integrable motion in a single degree of freedom Hamiltonian 
specified by the action 12. This Hamiltonian is periodic in the remaining angle variable pi 
with period %/S. It should be noted that this periodicity is independent of the perturbation! 
The next step in a perturbative treatment of the resonant motion is to expand the Hamiltonian 
(19) in the action 1; around the resonant value. This will be described in section 5 with its 
implications on quantization. 

3.2. Quantization of rhe resonance Hamiltonian 

The primitive semiclassical quantization conditions for the actions in the rotating system 
can be easily obtained by inserting the conditions for the original actions (5) into the 
transformation (la), yielding 

For the sequel it  will be more convenient to separate multiples of s from the first quantum 
number n l  and absorb it into the second one, n2, i.e. we introduce the pair of integers 
(m E Z. 1 = 1,. . . , s), uniquely defined by nl = sm + I ,  rather than nt as quantum 
numbers. The quantization rules (5) then adopt the form 

(22) 

(23) 

I ;  = h ( l  + m s  + a w l )  

m .  n2 E Z 1 = 1,. . . . s .  ) I ;  = h nz + - ( l +  ( 1  
The advantage of this represenlation is that the quantum condition (23) uniquely determines 
the numbers n2 and I ,  whereas the quantum number m is not affected. 

These primitive semiclassical quantization rules, however, cannot be applied in the 
resonance zone since primary tori specified by the action I; are missing inside the separatrix. 
Quantization conditions for secondary tori, i.e. tori around the elliptic fixed points in the 
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resonance islands, will be derived in section 5 independent of the classical resonance theory, 
based only on geometrical path considerations. 

As already realized by other authors [6,7] a uniform quantization valid across the 
separauix can be achieved by replacing the actions in the Hamiltonian by differential 
operators with respect to the corresponding angle variables. (For a more comprehensive 
presentation of action-angle variables in quantum mechanics see, for example, [22]). 

If ( I ,  p) is any pair of action and angle variables, a pair of corresponding quantum 
operators (i, 9) fulfilling the commutator relation [p, f] = ih is obtained by setting 

~ 

I = -ihav, (24) 
In order to recover the eigenvalues of the action operator correctly as specified by the related 
quantum condition Ia = h(n -t 6). one has to impose Bioch boundary conditions on the 
eigenstates In) of i, i.e. 

An alternative, which allows for keeping periodic boundary conditions, is to redefine 
f = -iha, + h p  [141, but this advantage would be lost in the following. 

Applying these rules to the actions ( I ; ,  I ; ) ,  the quantum conditions (22) and (23) imply 

(26) (pilm, I )  = -exp(i(l + ms + $pl)vi) 
1 

JT;; 

for the eigenstates of the related action operators 8 and f;, respectively. Sincp the resonance 
Hamiltonian # in (20) is independent of pi, the quantum Hamiltonian H ,  obtained by 
replacing the actions ( I ; ,  1;) as depibed  above, commutes with f;. Consequenkly, each 
eigensolution Qn,,~,nz(pi,pi) of H factorizes into an eigenstate (vilnz,l) of 1; and a 
0ne;dimensional function &,,!(pi), which is a linear combination of the eigenstates (pi Im, I )  
of 1; with I fixed according to (23): 

The functions &,!, nl E Z are dgenfunctions of the one-degree of freedom Hamiltonian 
H I , ~ ~ ( ~ ~ , v ! ) ,  the restriction of l? on the corresponding eigenspace lnz , l )  of I;. This 
Hamiltonian is obtained when specifying the action I; according to quantum condition 
(23) and then repl@ng the remaining coordinates ( I ; ,  pi) by the corresponding quantum 
operators. Since fi~,"~ is periodic in 'pi with period 2n/s it couples only those Fourier 
components with indices differing by multiples of s. This is the reason why the 
eigenfunctions adopt the special form (28) (see akQ [71). 

has a band structure due to the 
periodicity in 'pi, In our notation, the quantum number n I indicates the band and 1 = 1. . . . , s 
counts the states in the band. In general, however, this spechum depends on the action I;. 
Moreover, the quantum number I is determined by quantum condition (23). In this way, 
the quantization condition for I; selects a series of states one from each band. 

More generally speaking, the spectrum of 

The two-dimensional eigensolution finally adopts the form 
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By inserting the coordinate transformation (14), one can easily verify that this function 
fulfils the BIoch boundary conditions in the original angle variables p1, M, as implied by 
the quantum condition (5) for I ,  and l z .  

3.3. Time-periodic systems 

So far our treatment is general for twodimensional autonomous systems with rotational 
motion in one direction. Now we specialize to the particular case of onedimensional time- 
periodic systems. As shown in section 2 the quasi-energy function Ho of 9 integrable time- 
periodic system written in action-angle variables has the particular form HO = h(l1) + W I Z .  
Thereby, the action II is a function of ( p ,  q,  t) alone (see (5)), whereas I2 depends on the 
momentum p, canonical conjugate to time. The perturbation H I  ( p ,  q .  t )  does not depend on 
12, due to this construction of the action variables and the resulting integrable approximation 
(20) to the quasi-energy function has the form 

B Mirbach and H J Korsch 

~ ( J I ,  T i ,  'PI, (p2) = Nli) + CHI (11, 'PI. 'PZ) + 011 (30) 

= h ( / i ) + ~ H ; ( I ; , p j , p ~ ) + o / ; -  - w / ; .  (31) 
r 
S 

After averaging over the fast variable p;, one is again left with a separable Hamiltonian 
i r - 

(32) 

Consequently, the quasi-energies of the corresponding quantum Hamiltonian are 
superpositions of two independent terms. If En,,( are the eigenvalues of &, we find, 
after inserting (23). 

H ( / i , I i , q { )  = h(/i)-  - ~ I ; + t H ; ( l i , p { ) + w I ;  =: Hi , ,C(I : ,p { )+@I i .  
S 

(33) 
In this way, the quasi-energy spectrum is reduced to the band spectrum of a single (!) one- 
degree of freedom Hamiltonian with additional rational shifts of h w .  Besides the Brillouin 
zone structure generated by the term hwnz, one finds a global energy shift ho$lr/4s in the 
case that the global motion is not rotational (PI # 0). Moreover, the s states I = 1, . . . , s in 
each band are shifted by hw/r/s .  These shifts by multiples of h u t s  are due to the boundary 
conditions in the rotating coordinate frame and may not be mixed up with splittings in the 
energies E",,! which superimpose the shifts of h o / s  in the quasi-energy spectrum. In the 
case of s degenerate energies En,,( in a band nl one finds an equidistant series of quasi- 
energies with spacing Ao/s, giving the impression of a 'finer' Brillouin zone structure. 

The splittings of the states in a band of an s-periodic potential can be understood as 
a result of tunnelling through the barriers of the potential. This physical interpretation 
is provided by a uniform WKB theory, which is obtained by considering complex-valued 
action integrals through potential barriers and applying matrix techniques [23,24]. Within 
this semiclassical theory approximate formulae for the width of energy gaps and energy 
bands have been derived. 

We recommend here, in particular, the work by Connor el al 1241, where, in addition 
to a general theory for 2nls-periodic potentials, a detailed analysis of the particular case 
of the Mathieu equation can be found. This equation is of special interest in the context of 
dynamical resonances, as will become clear in the following section. 

For a given problem it might be hard to find the analytic form of the integrable 
approximation H!nt to the Hamiltonian. This is, however, not the intention of the present 
work. We rather want to show how-independent of the underlying s y s t e m d a t a  drawn 
from the actual classical dynamics can be used to compute quasi-energies and to understand 
the influence of a classical resonance on the quasi-energy spectrum in detail. 

r 
en , ,~ ,nz  = en,,( +Eo-([ + +PI) + . 

S 
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4. The pendulum approximation 

As shown in textbooks of dynamics (see, e.g.. [1,5]), the integrable approximation of the 
resonant Hamiltonian is a ‘pendulum’ for sufficiently small perturbation. This result is 
derived in two steps. First, it is argued that the Fourier amplitudes in (19) generally fall off 
exponentially with the order m such that it is sufficient to use terms up to first order: 

fi = Ho + c Ho,o + 26 H-,,,x C O S S ~ ~  . (34) 

Here, the origin of the angle q; has been chosen such that the fixed-point positions defined 
by afi/i3qfl = 0 are located at ‘pi,o = 0 and K / S  for elliptic and hyperbolic fixed points. 
respectively. In addition, there are s copies of each of these fixed points at positions shifted 
by multiples of 2n/s. The next step is to expand this Hamiltonian in I ;  about the value 

fulfilling the resonance condition, i.e. 

In lowest order, is thus the location of the fixed points in the action direction. Since 
dI;/dt = o(E) ,  an expansion in I ;  corresponds to an expansion in t of the same order. 
Expanding HO to second order in A/[ = I ;  - I;,o and keeping the lowest-order term in 6 
and A/; ,  one obtains 

fi = E O ( I ~ , ~ )  + C ( A / i ) ’ / Z  - Fco~srpi  (36) 
with 

F(II.0) = €H-r,.r(I;,o). (39) 
In general, these parameters implicitly depend on the second action I;, which has to be 
specified by the quantization condition (23). The Hamiltonian fi in (34) is that of a 
pendulum, however, depending on sqP; rather than ‘pi. By rescaling the angle ‘pi this 
difference to the usual pendulum can be removed. For the quantum treatment, however, 
this would require an adjustment in the Bloch boundary conditions, To avoid this, we 
prefer to deal here with the Hamiltonia (36) as it stands. Hence, the phase space of this 
Hamiltonian consists of a band of s copies of the pendulum phase space (see, e.g., [l]). 

One finds s elliptic fixed points located at ( A I ; ,  q;)  = (O,O+ jZn/s),  j = 0, . . . , s - 1, 
and s hyperbolic fixed points at positions shifted by n/s in the angle relative to those of 
the elliptic points. The librational motion around the elliptic fixed points is separated from 
the outer rotational motion by separatrices intersecting at the hyperbolic fixed points. It is 
convenient to introduce the parameters 

R = (F/G)’’’  and WO = s(FG)”*. (40) 

The eigenvalues of the stability matrix are then found to be eiiwf for the stable fixed point 
and e h f  for the unstable fixed point. This means that 00 appears both as the frequency 
for linear oscillations around the elliptic fixed points and as the positive stability exponent 
of the hyperbolic fixed point. The two separatrix branches are described by the formula 

/ii(qi) = &ZRcos ( f s q i )  + /I,, . (41) 
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The ‘size’ of the resonance defined as the symplectic area enclosed by the two separatrix 
branches Ii’(rpi) is given by 

B Mirbach and H J Korsch 

Furthermore, the resonance is located at 

(43) 

Within the uniform approximation as described in the previous section, the eigenvalues of 
the corresponding quantum Hamiltonian f i  are obtained by inserting the action operator 

, ’  = -(At + A - ) .  
4K 

A 

A I ;  = -%ap; (44) 

into (36) and solving the resulting eigenvalue equation Hp = E p ,  which can be written in 
the Mathieu form 

@ “ + ( a - Z q c o s s p ; ) $ = O  (45) 

(46) 

with 
2SR 
h WO 

a = r ( E  - E ~ ( l i , ~ ) )  and q = ( R / f i ) ’ ,  

The boundary conditions for the solutions are (compare (28)) 

@n, ,~ (rp!  + zs/s) = exp( i2a ( l+  $ ‘ ) / s )@d+4 (47) 

(48) 
This-in general fractional-Maslov index fi’ is obtained when the quantum condition (22) 
is expressed in terms of AI; rather than I ; .  The boundary condition (47) can be satisfied 
for the characteristic values a.,,!, where nl = 0, 1,2, . . . is the band number. As is easily 
verified, shifts in the action by multiples of h do not affect the spectrum. They only shift 
the quantum number 1.  So we ha\,e taken $p’ modulo 1 in (48) without loss of generality. 

The idea is to approximate the real system in the vicinity of a resonance by a pendulum in 
order to use the solutions of the resulting Mathieu equation, i.e. the pendulum eigensolutions, 
as approximations for the eigenvalues and eigenfunctions of the real Hamiltonian. The 
mapping of the eigenvalues includes, however, a semiclassical approximation due to the 
transformation to action-angle variables which is the starting point of the resonance theory. 
In the following, we show how the required parameters can be completely obtained from 
the classical dynamics. This is possible without performing a transformation to action-angle 
variables, since all data used are canonical invariants. One should keep in mind that the 
phase space of the real dynamics is four-dimensional. being reduced to three dimensions in 
the integrable approximation by averaging over the fast variable. What is mapped onto the 
two-dimensional pendulum phase space is not the full dynamics in three dimensions but the 
restriction on the subspace specified by quantization condition (22) for /z. 

There are four parameters which have to be determined. Two of them, the location 
and the size A of the resonance, determine the Mathieu equation with the boundary 

conditions uniquely (see (42), (46) and (48)); the other two, the frequency 00 and the 
constant energy term Eo(l i ,o) ,  are needed to transform the characteristic values an,,l of the 
Mathieu equation into eigenvalues of the Hamiltonian (see equation (46)). In detail, our 
proposed method for determining these parameters from the classical dynamics works as 
follows. 

with 
I I -  I ~ f i  -  PI + l;.o/h) mod 1 .  
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The determination of the areas A+ and A- below the upper and the lower separahix, 
respectively, yields the position (43) as well as the size A (42) of the resonance 
which determines the parameter R (22). If the system under consideration is integrable 
or the chaotic layer surrounding the separatrix is small, the areas can be obtained by 
computing upper and lower invariant tori very close to the separatrices. For generic 
KAM systems, this will not be possible because of the stochastic layer produced by the 
transversal intersections of the stable and unstable manifold. In this case the theory 
of MacKay eta1 [17,18] can be applied showing that even for resonances, where the 
manifolds do not join smoothly building separatrices, an 'area' of the resonance can still 
be defined. This area is computed as the action difference between homoclinic orbits 
and the hyperbolic periodic orbit (see the appendix). 
The frequency 00 can be obtained by a stability analysis of either of the periodic 
orbits, i.e. computing the stability matrix and determining the stability exponents by 
diagonalization. This stability analysis also allows us to localize the fixed points 
precisely, which is a prerequisite for determining, in particular, the action of the orbits 
with high accuracy. 
The constant term E ~ ( l i , ~ )  in (46) can be calculated by utilizing the invariance 
of integrals of the PoincarbCartan form along closed paths under canonical 
transformations. In the rotating coordinates we find for the action of the periodic orbits 

= s(2ir 1; '- T &$) (49) 
where + and - refers to the hyperbolic and elliptic orbit, respectively, and the period 
of the periodic orbit is sT with T = 2ii/w2. Relation (49) is valid in the integrable 
approximation where these periodic orbits appear as equilibria, i.e. yli is constant along 
them. Using the positions of the equilibria in (36) on the other hand yields 

J?: = Eo(I;,,) + F . (50) 
Inserting this result as well as the quantized values (23) for I; into (49) one finally finds 

The action of either of the periodic orbits can therefore be used for determining the 
constant energy E ~ ( l i , ~ ) .  On the other hand, since (51) are two equations, E&J can 
be eliminated and the parameter F is obtained as action difference of the periodic orbits 
as an alternative to the method described above. One can also use this redundancy of 
information to check whether the pendulum approximation is applicable. 

Now solving the first equation in (46) for E and inserting (51) we finally obtain for the 
energy eigenvalues 

where the an,, i ,  1 = 1, . . . , s, n1 E No are the characteristic values of the Mathieu equation 
(45). Again, this result is valid, in general, for all two-dimensional autonomous systems 
which are rotational in one direction. Whereas in this general case the parameters of the 
Mathieu equation depend on the action I;, there is only a single Mathieu equation to be 
solved in the case of a time-periodic system. The frequency wz is to be replaced by the 
driving frequency o of the system. In practice, the Mathieu equation is solved by a continued 
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fraction ansatz for the Fourier coefficients, which is a straightforward generalization of the 
algorithm described in [25].  

In this way we ha\,e found a semiclassical formula for the quasi-energies within the 
pendulum approximation, which uses as parameters the data of either of the periodic orbits 
and the size and location of the resonance, which can also be expressed by the actions of 
the hyperbolic and homoclinic orbits. 

B Mirbach and H J Korsch 

5. Quantum conditions for multiply-periodic flux tubes 

In this section, we will generalize the EBK quantum conditions to multiply-periodic flux 
tubes. Similar results for particular resonances in coupled oscillator system have already 
been presented by various authors [10,6,7]. Our treatment, however, will be general for 
all time-periodic systems. 

The resulting quantization rules are applicable for resonance islands, which are large 
compared to h ,  such that quantizing ton inside the resonance islands exist. This can, in 
particular, be the case for larger perturbations where a resonance treatment, as described in 
the sections 3 and 4, becomes inaccurate. Resonance zones then start overlapping, giving 
rise to chaotic motion. Nevertheless, elliptic fixed points often remain stable even after 
resonances have overlapped, and one finds a stability island around them allowing for 
quantization. 

Suppose we have an r f s  resonance originating from the perturbation of a torus with 
Maslov indices pl = 0 or 2 and p2 = 0. as is always the case for time-periodic systems. 
Each flux tube surrounding an elliptic orbit of period s will close after 5 periods, appearing 
as s cylindrical tubes connected in time, i.e. the stroboscopic Poincark section at tn = nT 
cuts the tube of length s T  in s pieces of length T. Although we will, for convenience, 
denote the angle parametrizing the torus in the direction transversal to the surface of section 
as ‘time’, the following construction is general for two-dimensional autonomous systems 
with Maslov index = 0. A generalization to different Maslov indices is straightforward. 

Our basic ansatz is to write the Flquet  state u ( t )  as a sum over s states U()), 

each of them being the EBK wavefunction of the corresponding cylindrical tube. Since the 
cylinders are cyclically connected in time, the requirement of periodicity of u( t )  leads to 
cyclic conditions for the s functions, i.e. dJ)(t -+ T) = &+”(t), j = I , , , s. Hence the 
sum (53) can be rewritten as 

u ( t )  = uft + j T )  (54) 
+I 

where u ( t )  is sT-periodic in time. Visually speaking, we have switched from a T-periodic 
picture, where the quantization manifold appears as s cylinders, to a sT-periodic picture 
where we see a tube of length s T  (see figure 2). In this way, the problem of constructing the 
T-periodic wavefunction U is carried over to the construction of an EBK wavefunction U on 
this torus leading to quantization rules similar to (5). To obtain these quantization conditions 
we define two paths on the flux tube according to the case of a T-periodic tube, namely a 
path yI describing a closed loop in the surface of section and a path y2 connecting a point 
on the toms with itself in time sT. In the T-periodic picture we can choose between s loops 
y~ in the surface of section corresponding to the s islands generated by the intersection of 
the toms, all of them enclosing the same area (see figure 2). 
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t = o  t = l  

1 - 0  I = T  t = 2T I = 3T 

Figure 2. Resonant flux tubes surrounding an elliptic orbit of period t h e .  The tubes axe 
connected in time such that they form a single tube of length 3T. 

The quantization conditions are again derived from the uniqueness of the wavefunction 
along a closed loop. The wavefunction U (in the T-periodic picture the s functions vu) )  
have to be reproduced after going through the loop y ~ .  Thus, the first quantization condition 
is identical to the ordinary one (5) for librational motion: 

It should be noted, however, that the action /I along path y~ has nothing to do with the 
action variable used in subsection 2.4, and it is merely the form of the equation which 
coincides with (5); the path y~ is different. 

The derivation of the second quantization condition requires more care. Although there 
are no turning points in time, and the path y2 hence has no folds in the time direction, 
the global motion of the flux tube itself can generate loops if it is twisted around a central 
periodic orbit. The path y2 has to follow this global motion, as sketched in figure 2. The 
rotational or librational character of the global motion is specified by a Maslov index f i t ,  
counting the number of folds on the original perturbed torus in the surface of section. In 
case of a r / s  resonance, the flux tube of length s generates rpI folds, and the second 
quantization condition hence has the form 

The number of loops can also be regarded as the number of times the path touches the-in 
general complicated--caustic generated by the dynamics on the flux tubes. Splitting up the 
quantum number into n; = nzs + I r ,  I E { I ,  . . . , s}, nz E Z, which is always possible if 
r and s are coprime, equation (56)  coincides with the quantum condition (23) derived in 
subsection 3.2. Replacing pr by E - H one obtains 
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after solving the resulting equation for E .  Each quantizing torus, specified by the path yI 
and indicated by n l ,  provides a series of s equidistant quasi-energies with step size hw/s ,  
Comparing (57) with the result (33) one finds that this series of s states corresponds to s 
degenerate states in a band n i  of the effective one-dimensional Hamiltonian with energy 
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1 
E , , , , = E . , = - - - J w '  I = 1 ,  . . . ,  s .  (58 )  

ST n 
This is not surprising since we constructed the wavefunction as a superposition of s tube 
wavefunctions neglecting tunnelling between them. In general. however, the s energies 
E,,,,  will not be degenerate but show a level splitting which is due to dynamical tunnelling 
[13] between the s cylinders. 

The practical computation of the energies is completely analogous to the case of T- 
periodic flux tubes, as described in section 2. The integral of the Poincar6-Cartan form is 
again transformed into an integral over the path y1 and a classical trajectory leading to 

(59) E,,, = hwl(n1+ i) - (L) 
where (L) is the Lagrangian average over the flux tube of length sT and the frequency w ]  
is the winding number on the torus multiplied by the driving frequency. 

Writing the sT periodic wavefunction U as 

U", , 1 , n = nt (t)eillr/rtndar (60) 
in analogy to (12), we find for the T-periodic Floquet solutions the expression 

with u$(t )  = u,,(t + jT) being the wavefunction of cylinder j .  The solutions @*,,t(t) = 
e-icn,,t,nl~lfi u ~ , , , , ~ ~ ( ? )  of the timedependent Schrodinger equation are then 

Since these linear combinations are independent for different I ,  one can construct 
wavefunctions of the form 

W ( t )  = e-iE.,ifl U,, l j)  (0 (63) 
which are initially located on cylinder j and follow the flux tube in time. 

6. Generalization to more than one island chain 

Throughout the paper we have assumed, for convenience, that the island chain corresponding 
to the winding number Q = r / s  consists of s islands, which are cyclically connected with 
each other, which means that r and s are coprime. In general, however. there may be a 
number k > 1 of chains for a given winding number. This case can be included in our 
treatment by allowing r and s to not be coprime. i.e. r = kro, s = kso with ro, SO coprime, 
k E W. Then the total number of s islands can be divided into k groups (chains) of SO islands 
each, which are cyclically connected in time by k distinct closed flux tubes of period so. 
The appearance of more than one chain of islands is due to discrete phase-space symmetries 
which cannot be fulfilled by a single flux tube of period so such that rather one finds a 
number k of such flux tubes which are related by discrete symmetry transformations [26]. 
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The generalization of our semiclassical theory to this general case is straightforward. 
The starting point is the integrable approximation to the Hamiltonian which is still 2rr/s- 
periodic in the remaining angle variable (compare section 3). As before, this gives rise to 
the introduction of quantum numbers ( n , ,  I ) ,  where 1 runs over s states in each band n , .  
What has to be modified in the final results are the rational shifts of ho which are added to 
the eigenvalues E n , , [  of the one degree of freedom Hamiltonian to yield the quasi-energies 
(see subsection 3.3). Splitting up I as I = j s o  + lo. j E NO, lo = 1 , .  . .,SO. equation (33) 
reads 

The final equation (52) in section 5 has to be modified accordingly. By comparison with 
(33) one sees that actually only the common factor of  k has been cancelled in the quotient 
r / s  and the integer r j  has been absorbed by n 2 .  

Rather than s distinct shifts of multiples of hw/s  the shifts are only multiples of ho/so, 
each of which appears k times in every band. The consequence is that-in the case of 
s-degenerate eigenvalues E,, ,[-the quasi-energies are organized as an equidistant ladder of 
k-times degenerate states with step size hwlso. 

This organization scheme is also obtained from primitive torus quantization (section 5). 
The primitive quantization rules can be applied to any of the k (non-connected) flux tubes 
of period SO yielding an equidistant ladder of quasi-energies (compare (57) and (58)) 

The k flux tubes are interrelated by symmetry transformations, and the semiclassical 
quantization yields k times the same result, leading to the structure described above. 

The opposite extreme of the case k = 1 is the situation where k = s. Here we have 
s flux tubes of period one (not connected cylinders) which close after a single period. In 
this case one finds s degenerate quasi-energies without further rational shifts of Ro since 
so = 1. 

Solutions of the Schrodinger equation, which fall in k distinct symmehy classes, are, in 
this primitive semiclassical context, independent linear combinations of the k semiclassical 
flux tube wavefunctions. In the real quantum system, one will find k almost degenerate 
states due to dynamical tunnelling. Each of these states belongs to a different symmetry 
class. As Bohigas et a1 [27] demonstrated, this property of states associated with flux tubes 
can be used to distinguish them from 'chaotic' states in a mixed system. 

In the general case of k flux tubes of period so, one finds SO groups lo = 1 . .  . . ,SO of 
k almost degenerate states in different symmetry classes. The quasi-energies in different 
groups are shifted relative to each other by multiples of fiw/so as expressed by (65). 

Putting together the results, we conclude that each of the s quasi-energy states in one 
band is located on each of the s cylinders independent of the value of k. In the absence 
of tunnelling, a wavepacket initially located in one of the stability islands would follow 
the corresponding flux tube with period so. i.e. it would periodically show up in the so 
islands of one chain similar to a classical wavepacket. In real quantum dynamics dynamical 
tunnelling to all of the s cylinders will occur, which gives rise to splittings in the energies 
En,,[, 1 ~ 1 ,  .... S. 

We emphasize again that the splittings appear in the quasi-energy spectrum only if the 
quasi-energies are taken modulo ho/so.  
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7. An illustrative example 

7. I .  The classical model 

As a model system we consider a forced quartic oscillator 
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p z  bx4 
2m 4 H ( t )  = - + - - hxcos(wt) , 

The system typically exhibits both regular and chaotic motion in coexistence, as predicted 
by the KAM theorem [16]. The Hamiltonian (66) depends on a single parameter (up to 
rescaling). Here we choose u n i t s  with m = b = o = I and fix the remaining control 
parameter at h = 2 x 3-4.5 0.014 255 6. This particular choice of the force constant is 
due to Thylwe 1281, who studied periodic orbits in the classical model. We adopt this 
parameter set since the phase space (see the PoincarC section in figure 1) shows rich 
resonant island structures without large chaotic zones. This means that the resonances 
disturb each other only slightly and can hencefore be treated as isolated. Furthermore, 
the smallness of the chaotic regimes avoids problems in performing primitive semiclassical 
torus quantization. The most prominent resonance structures are three connected island 
corresponding to winding number Q = 4 and four islands (two pairs of connected islands) 
corresponding to S2 = $. 

7.2. Quasi-energies of the quantum Hamiltonian 

Exact quantum computations of quasi-energies for Hamiltonian (66) were carried out using 
an Adams-Moulton predictor-corrector method [29] for h = 0.0005. For this small value 
of A a sufficiently large number of sLates are localized in the dominant resonances such ihat 
primitive quantization on secondary, multiply periodic resonant flux tubes can be performed. 

The quasi-energy states have been ordered according to increasing values of the 
expectation value of 6 at time zero and $e number n = 0, I ,  2, . . . counts the states in this 
ordering. In figure 3 the values of (czlH(t = 0)ln) are plotted versus n for the first 200 
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h 
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0 
0 50 100 150 200 

a 

Figure 3. Expectztion value (alri(r = 0)ln) for a qumi-energy state 01 versus n. The plateaux 
correspond to classical resonances. 
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quasi-energy states. For high energies, where the oscillation is fast compared to the driving 
frequency w,  the classical energy H ( t )  becomes an adiabatic constant of motion. Thus one 
expects at least for high energies (i.e. large values of a) the plot of (culf?(t = 0)la) versus IY 

to be approximately given by the classical function H ( t  = O)(I), where I is the invariant of 
the (time-independent) system defined by Hamiltonian H ( t  = 0). But also for lower values 
of IY the expectation value of the instantaneous Hamiltonian should-for a slightly disturbed 
system-give the correct ordering of the states in accordance with primitive quantization. 
This does, however. only apply to states allowing for primitive quantization on primary tori, 
outside the resonance regions. 

For states semiclassically related to secondary tori inside the separatrix the expectation 
values (alfi(r = 0)lcu) should lie in the range between the classical values of H ( t  = 0) 
on the unstable and stable fixed point, Ht and H - ,  respectively. Since these two values 
of H ( t  = 0) are close to each other, quasi-energy states related to a resonance form 
a plateau in the plot of the expectation values, clearly visible in figure 3. Here one 
recognizes two plateaus of quasi-energy states, which can be assigned to the large islands 
corresponding to winding numbers n = f and S2 = f, respectively. For the particular 
case of the period-3 resonance, we found classical values of H+(t = 0) = 6.97 x 
and H - ( t  = 0) = 6.18 x which coincides precisely with the range of (A(t = 0)) 
covered by the corresponding plateau. Further plateaus corresponding to other, smaller, 
islands cannot be recognized. 

In figure 4 the quasi-energy angle 0, = tUT/f i  is plotted versus a. Close to a resonance 
with winding number = r / s  primitive semiclassics tells us (see equation (IO)) that 
adjacent quasi-energies differ approximately by 

(67) 
As a consequence, the quasi-energies appear to lie on s parallel equidistant branches having 
the shape of parabolas with the minima at the resonance centre. In figure 4 this structure 
appears most clearly for the resonance Q = 4 at CY % 160. Moreover, one can recognize 
five parallel branches for a % 80 and three for a % 50, which show up less clearly. So far, 
this clear organization of the quasi-energies is to be expected for an integrable system even 
without resonance islands. The width of the parabolic parallel branches does not correspond 
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Figure 4. Quaienergy angles R. = TE-F versus a for the firs1 200 quasianergy states. 
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to the size of the classical resonance islands but is determined by the rate of change dQ/dI 
of the winding number with the action, which is (up to a constant factor) the curvature of 
the parabola. In the present case this function declines with the action, leading to the broad 
structure corresponding to B = 1, in contrast to the smallness of the resonance islands. 

The influence of the classical resonance islands on the quasi-energy spectrum manifests 
itself in deviations from these smooth curves, as is clearly visible for some quasi-energies 
at the minima of the two broad parabola. The number of states showing this deviation from 
the global trend is crudely determined by the area of the classical resonance. In the case 
of Q = f ,  the large resonance (again see figure 1) destroys almost completely the clear 
organization of the quasi-energies on parabolic curves. 
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7.3. Quasi-energies related to a period-3 resonance 

In the following we analyse the quasi-energies in the vicinity of the period-3 island in more 
detail. Figure 5 shows the first 100 quasi-energy angles 0, = &T/h plotted versus 01 as in 
figure 4. This time, however, the quasi-energy angles were taken modulo 2n/3 such that the 
distribution of the states on thz three parallel branches disappears and the typical structure 
of the quasi-energies spectrum turns out much more transparently, as already suggested by 
the theoretical considerations in the previous sections. 

Connecting the states as ordered by 01, one finds the quasi-energy angles lying on a 
smooth curve with slope u(01) = 2rr(S2(01) - A ) ,  where Q(a) is the winding number on 
the quantizing torus for state 101). As discussed in the previous section, this ordering is 
in accordance with primitive semiclassical quantization and therefore breaks down on the 
separatrix. In our case we find the states up to 01 = 34 and from a = 60 upwards to fit 
into this scheme, In between, a different ordering scheme arranges the states in a series of 
triplets. This ordering can again be understood on the basis of primitive torus quantization, 
but, on secondary, period-3 flux tubes in the inner resonance islands as described in section 5. 
Therefore, we expect triplets of states degenerate modulo 2n/3. Also, this ordering breaks 
down at the separatrix and one finds the triplets breaking up in their order from n, = 6 

a 

Figure 5. The fvst 100 quaienergy angles S. token modulo 2nf3. Encircled numben are the 
band numbers nl for a triplet of states connected by full lines The broken lines connect states 
according to their ar-ordering. 
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upwards. For these states, the degeneration in the quasi-energies (taken modulo 2xj3) also 
starts to split up. The encircled numbers in figure 5 combining three states are the band 
numbers nl (see sections 3 and 4) obtained from the uniform quantization, which will be 
described in more detail below. This ordering in bands of three states each can be continued 
across the separatrix, combining in an alternative manner two states above the separatrix 
with one below and vice versa. It should be noted that the band quantum numbers ( n l ,  1 )  
cannot be assigned from the pure quantum computation. 

Finally, in figure 6 the quasi-energy angles 8 (again taken modulo 2x/3) are plotted 
versus the band number n, .  In this plot both the global trend of the quasi-energies as well 
as the systematic increase of the splittings becomes clearly visible. 

7.4. Primitive quantization 

Now we turn to the semiclassical quantization which was a prerequisite for arranging the 
quasi-energies in bands, as shown above. First of all, one can estimate the number of states 
related to the resonance by enclosing the period-3 island as closely as possible by invariant 
tori. Such tori, approximating the resonance region from below and above, were found with 
areas (in units of h = 2xh RZ 0.003 14) of A- = 35.3 and A+ = 61.1, respectively. This 
yields an upper bound for the resonance area of A,,, = A+ - A -  = 3 x 8.6. The largest 
period-3 torus we could find inside the resonance zone had an area of 8.3, yielding a lower 
estimation for the resonance area of Ai, = 3 x 8.3, which differs from the upper one by less 
than h.  According to the quantum condition IL = h(nl +;) (equation (55)) we conclude that 
nine bands nl  = 0, . . . ,8 should be related to the resonance region, where the band nl = 8 
can be regarded as ‘the’ separatrix band, since the separatrix area is very close to the value 
of 3 x 8.5. Tori fulfilling the condition (55) for primitive quantization on secondary, three- 
periodic flux tubes, as described in section 5, can be found for n1 < 7. Outside the resonance 
region, states with (Y < 34 and (Y 2 60 allow for a primitive quantization on primary tori. 
The algorithm for performing the torus quantization is described in detail in 1161, where it 
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is also shown how to include a first-order approximation to the quasi-energies in (10) in 
case the quantum condition for the action is not perfectly met. This approximation can also 
be used for extrapolating quasi-energies into chaotic regions from nearby tori. This was 
done in the present example for the states in band nl = 8, approximating the quasi-energies 
from both the inner and outer tori closest to the (slightly destroyed) separatrix. 
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7.5. Uniform quantization of the approximate pendulum Hamiltonian 

As shown in section 4 one needs two parameters to determine the resulting Mathieu 
equation, namely location and size of the resonance. Although the tori provide a reasonable 
approximation for size and location of the resonances, an improvement is obtained when 
searching for homoclinic orbits and computing their action difference from the unstable orbit 
according to MacKay er al 1181 (see appendix). The results for the area below the upper 
and lower separatrix are (in units of h )  A" = 61.09 and A- = 35.41, respectively, yielding 
a Maslov index (see (43) and (48)) of p' = 3.0 and the area determining the parameter q 
in the Mathieu equation (see (46) and (42)) is A = At - A- = 25.68 = 3 x 8.56. 

For transforming the characteristic values of the Mathieu equation into quasi-energies, 
one needs two further parameters which can be obtained from the data of one of the 
periodic orbits as shown in section 4. The actions of the periodic orbits were determined 
to be S' = 77.57003h and S- = 68.5147171. The winding number Q of the stable orbit 
and stability exponent h of the unstable one are S2 = 0.072 19 and h = 0.06956. The 
noticeable difference between these two values indicates that the pendulum approximation 
is not perfect for the resonance under inspection. Since this resonance is quite extended 
in phase space in the radial direction, the 'centre-of-resonance approximation', i.e. the 
replacement of action-dependent parameters by their value at the resonance centre, is too 
crude. 

Nevertheless, we choose this resonance as a testing case for our proposed method, 
in particular, since this resonance allows a primitive torus quantization very close to the 
separatrix, such that both methods can be compared with their different limitations. 

Since only the data of one of the periodic orbits is required (again see (52)) we performed 
two independent computations using either of them. Note again that these two calculations 
correspond to identical characteristic values a",,, of the Mathieu equation (45) which are 
uniquely determined by location and size of the resonance. Action and stability exponent 
of the periodic orbit enter into the quasi-energies (52) as a constant and a factor, such that 
the results of the two different computations are simply related by an affine transformation. 
The splittings, in particular, are therefore proportional to WO and independent of the choice 
of the action in (52) (see again (52)). 

7.6. Discussion 

The results of the different semiclassical quantizations schemes are presented in tables 1 
and 2 for the bands nl  = 0, . . . , 10 together with the results of the quantum calculation. In 
table 2 quasi-energy angles are taken modulo 2 r / 3  in order to remove shifts of 2 r / 3 ,  thus 
making the band splittings visible. Note that the assignment of quantum numbers (n l ,  I )  
is due to uniform quantization. For bands up to nl = 8 they can also be assigned from 
the primitive quantization of the inner tori. The quantum numbers o( can also be obtained 
from primitive quantization of outer tori (see the discussion in subsections 7.2 and 7.3); the 
values of 01 were put in parentheses where no quantizing tori exist. 

As expected, the primitive quantization of the inner tori yields excellent results for 
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Table 1. Semiclassical quasi-energy angles 8, = e T p  of primitive toms quantization and 
uniform quanrizntion by using Mnthieu solutions in com-soo wiuI e u c t  quantum results. 
Quantum numbers a are put in parentheses where they cannot be obtained from primitive 
quantization on outer tori. Quasi-energies marked by 't' ace obtained by extrapolation because 
the quantization condition could not be fullfilled within m error of O.lh. 

Primitive semiclassical Uniform semiclassical 

n l  1 ct Exnct Inner Outer Sable Unstable 
~ 

0 1 (37) 
0 2 (36) 
0 3 (38) 

I I (40) 
I 2 (421 
I 3 (41) 

2 I (45) 
2 2 (43) 
2 3 (44) 

3 I (47) 
3 2 (481 
3 3 (49) 

4 1 (521 
4 2 (51) 

4 3 (50) 

5 1 154) 

0.5467 
2.6411 
4.7354 

0.9816 
3.0760 
5.1704 

1.3969 
3.4913 
5.5857 

I .79 I? 
3.8856 
5.9800 

2.1627 
4.2571 
0.0683 

2.5087 
4.6028 
0.4143 

0.5477 
2.6420 
4.7365 

0.9826 
3.0770 
5.1714 

1.3984 
3.4928 
5.5872 

1.7919 
3.8863 
5.9807 

2.1646 
4.2589 
0.0702 

2.5111 

0.5458 
2.6401 
4.7345 

0.9818 

0.6191 
2.7135 
4.8078 

1.0391 
3.0762 
5.1706 

3. I336 
5.2280 

1.3992 
3.4936 
5,5880 

1.7965 
3.8909 
5.9853 

2,1718 
4.2663 
0.0775 

2.5225 

1.4414 
3.5358 
5.6302 

1.8243 
3.9187 
6.0131 

2.1859 
4.2803 
0.0915 

2.5238 
4.6178 
0.4292 

2.831 I 
0.7387 
4.9294 

3.1181 
5.1882 
1.0109 

3.2935 
5.4733 
1.2341 

3.6356 

5 2 issj 
5 3 (56) 

6 1 (58) 
6 2 (53) 

4.6055 
0.4167 

2.8283 
0.7339 

4.6165 
0.4279 

2.8233 
0.7295 

2.8415 
0.7491 
4.9399 

3.1400 
6 3 (57) 

7 I (39) 

4.9212 

3.1137 
5.1841 
1,0098 

4.9227 

3.3372 
7 2 (46) 
7 3 (59) 

5.4316 
1.2428 

3.5061t 
5.60051 

5.2085 
1.0316 

8 I 6 0  
8 2 61 
8 3 35 

9 I 33 

3.2938 
5,4723 

3.2188' 
5.4819 
1,1508' 

3.6545 
5.5626 
1.4369 

3.7050 
5.9918 
1.7671 

3.3214 
5.5044 
1.2633 

3.6763 
5.6076 
1.4935 

3.7742 
6.0788 
1.7819 

1.2333 

3.6563 
5.579 I 
1.4476 

I .4111t 

9 2 34 
9 3 62 

5.5727 
1.4560 

3.7298 
6.0268 

IO 1 32 
10 2 64 

3.7117 
5.9955 

IO  3 65 1.7743 1.7339 

the lower bands n l ,  which show degenerate triplets when taken modulo 2rr/3. As 
this degeneration breaks up markedly, the deviations from the quantum results increase 
systematically from 1 x 

For the results of the primitive quantization on primary tori outside of the separatrix, 
we find a corresponding increase of accuracy with n , ,  i.e. when moving away from the 
separatrix. 

As already mentioned above, one cannot-for the resonance under consideration- 
expect the uniform method to yield precise results for all quasi-energies, since the underlying 

for low values of nl to 2 x lo-' for n, = 7 and 8. 
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Table 2. Same dm os in table I ,  wken however modulo 2x13. 

nl I CI 

0 I (37) 
0 2 (36) 
0 3 (38) 
I I (40) 
I 2 (42) 
I 3 (41) 
2 I (45) 
2 2 (43) 
2 3 (44) 
3 I (47) 
3 2 (48) 
3 3 (49) 
4 1 (52) 
4 2 (S I )  
4 3 (SO) 
5 1 (54) 
5 2 (55) 
5 3 (56) 

6 I (58) 
6 2 (53) 
6 3 (57) 
7 1 (39) 
7 2 (46) 
7 3 (59) 
8 1 60 
8 2 61 
8 3 3 5  
9 I 33 
9 2 34 
9 3 62 

I O  1 32 
I O  2 64 
10 3 65 

pnimitive sem’clxsicd Uniform semiclassical 

Exact Inner Outer Stable Unstable 

0,5467 0.5477 0.5457 0.6191 
0.5467 0.5477 0,5457 0.6191 
0.5467 0.5477 0.5457 0.6191 
0.9816 0.9826 0.9818 1.0392 
0.9816 0.9826 0.9818 1.0392 
0.9816 0.9826 0.9818 1.0392 
1.3969 1.3984 1.3992 1.4414 
1.3969 1.3984 1.3992 1.4414 
1,3969 1.3984 1.3992 1.4414 
1.7912 1.7919 1.7965 1.8243 
1.7912 1.7919 1.7965 1.8243 
1.7912 1.7919 1.7965 1.8243 
0.0683 0.0702 0.0775 0.0915 
0.0683 0.0702 0.0775 0.0915 
0.0683 0.0702 0.0775 0.0915 
0.4143 0.4167 0.4281 0.4294 
0.4140 0.4167 0.4277 0.4290 
0.4143 0.4167 0.4279 0.4292 
0.7289 0.7339 0.7471 0.7367 
0.7295 0.7339 0.7491 0.7387 
0.7324 0.7339 0.751 I 0.7406 
1.0193 1.2428 1.0456 1,0243 
0.9953 1.2428 1.0197 0.9994 
1.0098 1.2428 1.0316 1.0109 
1.1994 1.4117t 1.1244t 1,2270 
1.2835 1.4117t 1.2931 1.3156 1.2845 
1.2333 1.4117t 1,1508t 1.2633 1.2341 
1,5619 1.5601 1.5819 1.5412 
1.3903 1.3738 1.4188 1.3839 
1.4476 1.4369 1.4935 1.4560 
1.6173 1.6106 1.6798 1.6354 
1.8067 1,8030 1.8900 1.8380 
1.7743 1.7671 1.7819 1.7339 

pendulum approximation is too crude, However, using the data of the stable periodic orbit 
yields the quasi-energies in the lower bands, which are semiclassically localized on tori close 
to this fixed point, with the same accuracy as the primitive torus method (x= 1 x For 
higher bands the quasi-energies are overestimated when using this data set. 

Using the data of the unstable fixed point instead, one finds the quasi-energies in high 
bands (in particular n 1 = 7 and 8) recovered with high accuracy, whereas those of low bands 
are markedly overestimated. Note. in particular, that the quasi-energies of band nl = 8-the 
state which is, according to our estimates of the resonance area, ‘the separatrix state’-are 
predicted with the very high accuracy of 1 x This is the same limit of accuracy found 
in the primitive quantization of the degenerate states in the lower bands and seems therefore 
to be of inherently semiclassical origin for this model. 

For states definitely outside of the resonance, i.e. n l  > 9, the accuracy of the uniform 
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method declines with nl. This is. however, the region where the primitive quantization (on 
primary tori) again works very well. 

We conclude that the uniform quantization of the pendulum approximation yields very 
good results for states close to the separatrix (nl = 7 and 8) when using the data of the 
unstable periodic orbit and also in the case that the pendulum approximation is rather crude. 
The splittings of the quasi-energies are in any case obtained with high accuracy, since they 
are not very sensitive to the parameter chosen (they are, for example, independent of the 
action used in (52)). On the contrary, primitive quantization fails for these states since 
tunnelling has not been taken into account. But primitive quantization works very well 
where the uniform method based on the data of the unstable orbit becomes inaccurate, 
namely for states outside of the resonance and close to the stable orbit. 

8. Concluding remarks 

We have presented a uniform semiclassical theory of quasi-energies in the presence of 
accidental resonances based on essentially the same ideas as used by Uzer et a1 [6], Ozorio 
de Almeida [7] ,  and other authors. Our presentation, however, is general and independent of 
the particular form of the action-angle variables in the unperturbed system. An application to 
one-dimensional time-periodic systems unfolds and explains the structure of the quasi-energy 
spectrum in the vicinity of a rls-resonance, reducing it to the spectrum of a one-dimensional 
(time-independent) Hamiltonian of period 2x1s with additional shifts of integer multiples 

In a primitive torus quantization of secondary, multiply periodic flux tubes, the 
organization of the quasi-energy spectrum turns out most clearly yielding bands of quasi- 
energies which are degenerate modulo ftw/s. This primitive quantization represents the 
limiting case that dynamical tunnelling between the flux tubes is negligible. 

Uniform approximations to the quasi-energies, which yield additional splittings of quasi- 
energies due to tunnelling, are obtained by mapping the resonant dynamics onto a pendulum 
and solving the resulting Mathieu equation for pendulum eigenstates. We have shown 
how the parameter of this equation can be obtained from classical dynamics, without any 
algebraic manipulations of the Hamiltonian. This makes our method applicable to a general 
class of systems. The confinement to systems which are rotational in one direction is only 
due to our interest in  time-periodic systems, where the application of our results turns out 
nicely. The generalization to systems with Maslov indices p2 # 0 is straightforward. 

A determination of the relevant parameters is based on the data of the ‘essential’ orbits 
in the resonance zone, the stable and unstable periodic orbit as well as homoclinic orbits. 
This limited set of orbits is sufficient to compute all quasi-energies related to a classical 
resonance. Since this data set is redundant within the pendulum approximation one can 
also check the quality of the pendulum approximation based on these data. Moreover, we 
have demonstrated that even in the case that the pendulum approximation is rather crude. 
quasi-energies of ‘separatrix-states’ can be computed with high accuracy using the data of 
the unstable orbit. 

A further step in a generalization of this method will be to use the redundant data to 
obtain two further coefficients in a higher-order expansion of the resonance Hamiltonian. 
This means taking into account further Fourier coefficients of the resonance Hamiltonian or 
expanding the Fourier coefficients to a higher order in the action. In any case, the derivation 
of the formulae for the additional coefficients in the resulting differential equation in terms 
of classical data is straightforward. The resulting differential equation, however, will be 
more general than the Mathieu equation. 

of h o l s .  
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An interesting option offered by the uniformization is a pertubational treatment of small 
resonances by utilizing an expansion of the characteristic values of the Mathieu equation in 
terms of the parameter q, which is given by the area of the resonance. Such a treatment, 
already presented by Voth [9] for the particular case of coupled oscillators, will shed light 
on the influence of small resonances on the quasi-energy spectrum, thus quantifying the 
ndve picture that resonance islands influence the spectrum only if their phase-space area is 
small compared to h . Such an analysis, however, has not been included in this work and 
will be published elsewhere. 

A further interesting point is to test our method in the case that there is a chaotic layer 
around the (destroyed) separatrix which is larger than in the example studied here. The 
determination of resonance area and location by use of the action of homoclinic orbits as 
described in the appendix allows the application of the present semiclassical method to this 
case without further complications. Therefore one can study the influence of the destroyed 
separatrix on such states, in particular the transition to the case where the flux through the 
separatrix becomes larger than h. 
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Appendix. Area below destroyed separatrix from action difference aceording to 
MacKay el nl [17, 181 

Even for a destroyed separatrix, a resonance area can be defined by constructing a partial 
separatrix from segments of stable and unstable manifolds. These segments are joint in 
a homoclinic orbit, which approaches the unstable fixed point in both time directions. In 
general, there are two different homoclinic orbits, the so-called minimum orbit and the 
minimux orbit. The area under the partial separatrix differs according to the selection of 
the orbit in which the segments are joint. The difference between these two areas memures 
the flux through the destroyed separatrix (see the schematic illustration in figure Al) .  Note, 
however, that the area under the partial separatrix does not change under iteration; the flux 
through the separatrix is the same in both directions. MacKay eta1 [I71 introduced the term 
turnstik to describe this motion through the separatrix. The turnstile is thereby formed by 
the two enclosed areas on both sides of the minimax orbit (see again figure AI). 

Let x:, n = 1, . . , , s be the iterates of the unstable fixed point under the Poincar.4 map, 
i.e. the intersections of the periodic orbit and x n ,  n E Z, the iterates of the homoclinic point 
on the upper separatrix. This means that in the positive time direction the homoclinic point 
slides to the right on the stable manifold of the fixed point, i.e. 

and slides to the left in the negative time direction on the unstable manifold: 

j - t - c a  i = l ,  ..., s .  642) F 
Xi+lr  - X i  
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Figure AI. (a) A non-destroyed separauix: 
branches of stable and unstable monifold are joined smoothly forming the sepa"ix. Any point 
of lhe separatrix is homoclinic to the unstable fixed point (example shown by dotted points). 
(b) Destroyed sepzatrix: branches of s a l e  and unstable manifold intersect tmsvenally. 
intersection points being homoclinic orbits. The resonance m a  (dark shaded) is given by 
lhe action difference between the unstable periodic orbit and the minimum homoclinic orbit 
(full circles) Flux through the destroyed s e p m v k  (light-shaded area) is given as the action 
difference of the minimum and miniman (open circles) homoclinic orbit. 

Phe-space area below sepantrix branches. 

The integral 

of the Lagrangian L over one period along an orbit is the generating function for the Poincar6 
map, i.e. 

Therefore, the integral J p d q  over a segment of the stable manifold can be rewritten as an 
infinite sum of action differences between iterates of the homoclinic point and the unstable 
fixed point. The result for the area below the separatrix, built by two segments as described 
above, is then an infinite sum 

which converges exponentially fast. The expression for A- is identical except for the sign, 
since the homoclinic orbit moves in the opposite direction. 

In the practical computation, we followed the proposal of MacKay et a1 [18] to use a 
symmewy in the surface of section in order to reduce the problem of finding homoclinic 
orbits to a one-dimensional search problem. The 'minimax' orbit is, in general, lying on 
the symmetry line. Therefore one starts a point close to the fixed point and shifts it in the 
unstable direction until the point is lying on the symmetry line after a predetermined number 
j of iterations. This number of iterations is limited by the numerical accuracy and can be 
estimated from the instability of the orbit and the number of digits in the computation. How- 
ever, since the sum (A5) converges exponentially with j ,  a small value of j is, in practice, 
sufficient; in our case the value of the action difference converges after about 30 periods. 

The iterates of the second, the 'minimum' homoclinic orbits, are lying between those 
of the 'minimax' orbit. The 'minimum' homoclinic orbit has therefore no iterates on 
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the symmetry line, but is symmeixic with respect to reflection on the symmetry line. It 
can therefore be found by a similar algorithm. The action difference between these two 
homoclinic orbits measures the flux through the (destroyed) sepnratrix. In the present case 
this action difference turns out to be negligible, which indicates that the separatrix is only 
slightly damaged, as already noticed. 

For further detail we strongly advise the reader to study the work by MacKay et al 
117, 181 

B Mirbach and H J Korsch 
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