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Semiclassical quantization of kaM resonances in
time-periodic systems
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Fachbereich Physik, Universitit Kaiserslautern, D-67663 Kaiserslautern, Germany

Received 25 February 1994, in final form 27 June 1994

Abstract. A semiclassical theory for the quasi-energy spectrum of time-periodic systems with
accidental classical resonances is presented. The primitive EBK quantum conditions for integrable
systems arc extended to multiply periodic flux tubes occuring in resonant systems. Replacing
classical actions by appropriate differential operators in a classical resonance Hamiltonian yields
a uniform quantization of states related to a classical resonance region. The derivation being
general for time-periodic systems unfolds the organization of the quasi-energy spectrum, reducing
it to the spectrum of a single time-independent Hamiltonian of one degree of freedom with
additional rational shifts of %w. In a first-order approximation the resonance Hamiltonian is
reduced to a pendulum leading to a differential equation of the Mathieu type for the quasi-
energies. It is rigorously shown how parameters of the differential equation can be drawn from
classical dynamics, using the data of the ‘essential’ orbits in the resonance zone, i.e. stability
coefficients and actions of hyperbolic and elliptic orbits as well as actions of homoclinic orbits.
The quasi-energy spectrem of & forced quartic oscillator is studied numerically and evaluated,
Semiclassical guasi-energies related to a resonance of period three are computed and compared
with exact quantum mechanical eigenvalues.

1. Introduction

Extensive studies of dynamical systems during the {ast decades have shown that in generic
Hamiltonian systems both regular and chaotic motion coexist. The complicated. but
fascinating, phase-space structure of such systems has been inspected in great detail (see,
e.g., [1,2]}, at least for two-dimensional systems. The usual approach is to consider a
perturbed integrable Hamiltonian

H = Ho(h, b)Y+ eHi (1, b, @1, 02) (1

where ([}, I, ¢1, ¢2) denote the action-angle variables of the integrable system with
Hamiltonian Hp. The phase space of the integrable system is entirely stratified by
invariant tori specified by the actions Iy, I3, which are constants of motion. The torus
is parametrized by angles @i, @ such that the motion on the torus is linear in time, i.e.
@ (1) = eyt + @ (0), i = 1, 2, with frequencies
w,(11,12)=% i=1,2. 2)
A resonance corresponds to commensurable frequencies {(w;, wn) yielding a rational
winding number, i.e. 2 = w;/an =r/3(r,5s € N).
The KAM theorem tells us that tori in the neighbourhood of a resonance r/s are usually
destroyed. In a surface of section, one finds a chain of s islands embedded in a stochastic
layer. The centres of the jslands are elliptic fixed points as a result of the intersection of
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Figure 1. Stroboscopic Poincaré
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an s-periodic stable orbit with the surface of section. In between, one finds s hyperbolic
fixed points, whose homoclinic intersections generate the chaotic motion surrounding the
islands. The area of this stochastic band depends on the perturbation strength € and the
denominator s of the frequency ratio (see, e.g., [1, 3]). Although the resonant tori are
dense in phase space there remains—for sufficiently small e—a finite phase space volume
occupied by invariant tori since the width of the island chains declines sufficiently rapidly
with its order s (a typical example are the Poincaré intersections shown in figure 1). As a
consequence, these resonances can be considered as isolated in the limit of small €.

A description of the motion in the vicinity of a resonance is achieved by transformation
to a rotating coordinate frame [1]. In this way the global resonant motion is separated from
the slow relative motion, which allows for an adiabatic treatment,

A first integrable approximation is obtained by averaging over the fast variable. As a
result, one is left with a one-dimensional (time-independent) Hamiltonian which is periodic
in the remaining angle variable with period 2 /5. Especially for weak perturbations, this
Hamiltonian is that of the pendulum [1, 4, 5], also referred to as the ‘standard Hamiltonian’
because it is generic, i.e. it appears typically in KAM systems independent of the particular
Hamittonian. The phase space in the vicinity of a resonance exhibits two types of motion,
namely stable libration around elliptic fixed points and rotational motion above and below
the islands separated by separatrix branches from the librational motion.

The influence of isotated classical resonances on the energy spectrum has been studied
by a number of authors. Avoided crossings, e.2. those which typically show up in plots of
the eigenvalue spectrum versus a perturbation parameter, are related to isolaied resonances in
the classical dynamics {6-9]. Primitive quantization rules for multiply periodic resonant flux
tubes were presented [6, 7, 10-12] as well as uniform methods which allow for a continuation
of the semiclassical quantization across the separatrix. Degeneracies, which might appear in
primitive quantization due to discrete symmetries, are removed in this way and one obtains
splittings of energy levels due to dynamical tunnelling [13] between resonant tori.

Among other techniques, one method based on classical resonance theory is the
replacement of the actions in the resonance Hamiltonian by differential operators [14, 6, 7].
This uniform method seems to provide the best physical insight into the interrelation between
isolated resonances and the energy spectrum and had been successfully applied in the study



Semiclassical quantization of kAM resonances 6581

of avoided crossings.

Whereas these studies are all concerned with coupled oscillator systems, the present
work will be devoted to time-periodic systems. By introducing an extended phase space,
time-periodic Hamiltonian systems in one dimension can be treated as two-dimensional
autonomous systems. Within this approach they form a particular subclass of two-
dimensional systems. Therefore, quantization rules for time-periodic systems can be drawn
from the well known EBK rules for autonomous systems as demonstrated by Breuer and
Holthaus [15]). Bensch et al [16] developed a quantization method based on Poincaré
surfaces of section, which allows us to perform the quantization in two independent steps,
in contrast to related methods for general two-dimensional systems. As we will show when
briefly recapitulating this quantization theory in section 2, this is due to a separation of the
classical quasi-energy function in the quantizing action variables.

After a short overview of classical resonance theory in section 3, we will present a
theory of the quasi-energy spectrum based on a semiclassical quantization of the resonance
Hamiltonian. The basic ansatz for a uniform quantization is a replacement of the actions in
the resonant Hamiltonian by differential operators in essentially the same way as done by
Ozorio [7] and Uzer et al [6] in their studies of coupled oscillator systems,

For the class of time-periodic systems, however, it will turn out that the quasi-energy
spectrum can be reduced to the spectrum of a time-independent Hamiltonian with one degree
of freedom. Additional rational shifts of #w, which are due to the boundary conditions in
the rotating coordinate frame, then reproduce the quasi-energy spectrum of the original
Hamiltonian. As a result, we obtain a general organization scheme of the guasi-energy
spectrum in the vicinity of a classical resonance.

In the pendulum approximation, also referred to as ‘centre-of-resonance approximation’
by other authors, uniform quantization leads to an eigenvalue equation of Mathieu form.
In section 4, we derive expressions for the parameters of the Mathieu equation in terms of
classical phase-space data and show how these data can be drawn from classical dynamics,
independent of the underlying system.

Uzer et af [6] had a similar idea to use data of the separatrix and additional quantized
tori in order to predict the level splittings. Here we propose a different method, namely to
use the data of the stable and unstable periodic orbit in addition to those of the separatrix.
The separatrix data can be obtained from the action difference of homoclinic orbits and
the unstable periodic orbit [17, 18]. This aliows the extension of the method to the generic
case of non-isolated resonances disturbing each other so that the separatrix does not join
smoothly any more but generates homoclinic intersections, which are the onset of a chaotic
layer around the resonant isiands.

Moreover, in this way a step is made towards Gutzwiller’s trace formula [19]. Within
this quantization theory, the energy eigenvalues appear as singularities in a sum over all
periodic orbits, with the consequence that one needs, in principle, all periodic orbits in order
to determine any eigenvalue precisely. This theory works very successfully for systems
exhibiting hard chaos, i.e. systems allowing for a coding of periodic orbits such that only
a few of them are necessary for quantization. For mixed systems, however, the Gutzwiller
theory seems to be hard to apply.

We will show how the uniform quantization, being based on the generic resonant
dynamics, allows us to compute eigenvalues by using the data of the ‘essential’ classical
orbits in the resonance zone.

In section 3, we derive the primitive EBK quantization rules for resonant flux tubes based
on geometric path considerations. Within this approach, the quasi-energy states localized
on secondary tori inside the resonance reveal a very transparent structure representing the
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limiting case where dynamical tunnelling between the tori is negligible.

As an illustrative example we evaluate the quasi-energy spectrum of a periodically
driven Duffing oscillator and compute explicitly guasi-energies related to a resonance of
period three.

2. Quantization of time-periodic systems

One way to achieve a semiclassical quantization of one-dimensional time-periodic systems
is to increase the dimension by constructing an extended phase space in which the system
appears to be time-independent, so that the EBK quantum conditions

1
in—fpdq=ﬂm+%m) n; € Z i=1,....N (3)
Tty

for two-dimensional autonomous systems can be implemented. A comprehensive description
of this theory can be found in [13, 16]. Here, we give only a brief outline as far as necessary
for the theory presented in the subsequent sections.

By regarding 7 as a variable and introducing a conjugate canonical momentum p;, a
new conserved Hamiltonian H, the quasi-energy function, is obtained:

Hip,q,pi,1) = H(p.q. 1)+ p;. 4)

Invariant surfaces in extended phase space {p.q, p;.t} are topologically not two-
dimensional tori but non-compact cylinders. In the case of a time-periodic system, however,
one can regard ¢t as an angle variable by identifying ¢ and ¢ + T with the corresponding
frequency @ = 2/ T being the constant driving frequency. In this way, the invariant
cylinders form connected tori allowing for an implementation of quantum conditions {3).
The natural choice of a surface of section is the plain defined by {t = 0 mod T'}. We choose
the loop ¥ lying in this plane, whereas y, is chosen as a path connecting 4 point (p, g) at
time ¢ = 0 _with the same point at time 1+7. After solving (4) for p, on the quasi-energy
shell e = H (g, p, t, p;) = constant, quantization conditions (3) adopt the form

1
h=—|[ o =t{m+im) meZ
27 Y
. )
Ih=— —e=Hh y
2 o Lw + 2}[8 %) n3 €

with the Poincaré-Cartan form @' = p dgq — Hdr, No Maslov index appears in the quantum
condition for I3 since there is no furning point in the time direction, i.e. it is always possible
to choose y» such that s =0.

The quantization can be performed in two steps. The quantization condition for 7, has
to be fulfilled first, and the second condition in (5) determines the value of the quasi-energy
yielding the typical Brillouin zone structure of the quasi-energy spectrum:

I
b == | 0+ Boma. ®)
Tty
In a preceding article [16] the quasi-energy function was rewritten as

E = 0)111 + ﬂ)zIz - (L) (7)

by transforming the integral over j» into a repeated integral over y; and a path following
a classical trajectory. Here, w; (i = 1,2) are the frequencies of the angle variables
corresponding to the two actions, where the latter one is the constant driving frequency,
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t.e. w; = w, and (L} is the torus average of the Lagrangian which can also be written (and
computed in practice) as the long-time average

mT
{L)= lim — Lg,q.0)de. (8)
0

Equation (7) is also valid in the more general case of two-dimensional autonomous systems,
For one-dimensional time-periodic systems, however, (L} is a function of f; alone, such
that the dependence of the quasi-energy function on the actions separates as

H=hl)+wh. &)

This is the formal reason why the quantization can be performed in two scparated steps as
stated above. Inserting the quantization conditions (3) into (7) finally yields

Envmy = hoo{ny + Q(n + $u)) — (L) (10)

with frequency ratio Q@ = w/w.

These quasi-energies are the eigenvalues of the quantum Hamiltonian H {g.8) =H (g,t)—
ind; with time-periodic eigensolutions (note that p; in (4) has been replaced by the differ-
ential operator of the conjugate variable, the time)

(I:!(q r)_ihaf)uﬂl.nz =3n1 natnyna - (11)

The transition operators for a ladder of pericdic solutions {un, n,, 72 € Z} are at = e*ivf

i.e. the solutions can be written as
Uy (1) = Uy, (1) (12)

with 1, =u,, 0. Consequently, the solutions of the time-dependent Schrédinger equation
can be represented as

ch;(r) = et/ unl(t) (13)

which is the well known Floguet form and the traditional way of introducing the concept
of quasi-energies [20, 21]. In this picture, the Brillouin zone structure of the quasi-energy
spectrum appears as an ambiguity since each ladder of quasi-energies {&,, .,, n2 € Z}
corresponds to a single solution @, only.

3. Quantization of resonant dynamics

3.1. Classical resonance theory

Classically, a description of the generic resonant motion with rational winding number
£2 = r/s can be achieved by transforming the system to a rotating coordinate frame followed
by an adiabatic treatment. A comprehensive description of this method can be found in
the book by Lichtenberg and Lieberman [1]. Here, we will only sketch it briefly and show
how this transformation can be translated into quantum mechanics. The starting point is the
transformation to a coordinate frame rotating with the resonance frequency wy = wsr/s.
The ‘time’-coordinate ¢; is kept and a new variable ¢] is introduced, which measures the
slow deviation from resonance

p
o=@ — e =@ (14}

with generating function

r
= (fP; - ;tpz)!,’ + @21 (15)
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yielding the transformation of the actions

! r ’
L=1 h=5--1. (16)
The next step is to expand the perturbational Hamiltonian H, in a Fourier series
H = Z Hm‘nei‘"““*”“’ an
it
= Z Hm Nei(mqo’,-l-(mr/s-i-u]w;) . (18)
i

An integrable approximation to the Hamiltonian is then obtained by averaging over the fast
variable ¢} yielding

==}
I:-ﬁ = Z H—-mr.mseimw; . (19
m=0
This approximation is valid near the resonance, where @] 3 [¢]. Since the averaged
Hamiltonian

H(IL, I, @0) = Holdy, I3) + € By (1], I, @) {20)

is independent of ¢, the action /; is a constant of motion, the first term of a series expansion
for an adiabatic invariant of Hamiltonian (1). In this way, the dynamics generated by the
Hamiltonian is reduced to an integrable motion in a single degree of freedom Hamiltonian
specified by the action Jp. This Hamiltonian is periodic in the remaining angle variable ¢f
with period 2xr/s. It should be noted that this periodicity is independent of the perturbation!
The next step in a perturbative treatment of the resonant motion is to expand the Hamiltonian
(19) in the action [] around the resonant value, This will be described in section 5 with its
implications on quantization.

3.2. Quantization of the resonance Hamiltonian

The primitive semiclassical quantization conditions for the actions in the rotating system
can be easily obtained by inserting the conditions for the original actions (5) into the
transformation (16), yielding

I =h{n + i)

, r 1)
12=h(n2+;(n1+§m)) n,ny €L,

For the sequel it will be more convenient to separate muitiples of s from the first quantum
number r; and absorb it into the second one, n,, i.e. we introduce the pair of integers
(me &, =1,...,5), uniquely defined by n, = sm + [, rather than n; as quantum
numbers. The quantization rules (5) then adopt the form

I =n(l+ms+ im) (22)
Ié:h(uz+£(l+%m)) m, ny € Z I=1,...,s. (23)

The advantage of this representation is that the quantum condition (23) uniquely determines
the numbers 7, and [, whereas the quantum number s is not affected,

These primitive semiclassical quantization rules, however, cannot be applied in the
resonance zone since primary tori specified by the action | are missing inside the separatrix.
Quantization conditions for secondary tori, i.e. tori around the elliptic fixed points in the
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resonance islands, will be derived in section 5 independent of the classical resonance theory,
based only on geometrical path considerations.

As already realized by other authors [6,7] a uniform quantization valid across the
separatrix can be achieved by replacing the actions in the Hamiltonian by differential
operators with respect to the corresponding angle variables. (For a more comprehensive
presentation of action-angle variables in quantum mechanics see, for example, [22]).

If (1, ) is any pair of action and angle variables, a pair of corresponding quantum
operators {/, ¢) fulfilling the commutator relation [, f] = i% is obtained by setting

I=—ina,. (24)
In order to recover the eigenvalues of the action operator correctly as specified by the related

quantum condition /, = h(n + B), one has to impose Bloch boundary conditions on the
eigenstates |n} of I, i.e.

1
{pln) = —==exp(i(n + plp). (25)

NG

An alternative, which allows for keeping periodic boundary conditions, is to redefine
I = —ik8, + 7 (14], but this advantage would be lost in the following.
Applying these rules to the actions (/{, [3), the quantum conditions (22) and (23) imply

exp(i(l + ms + Li1)e}) (26)

1
! =
1
(w3ln2, 1} = ﬂcxp(i(nz + £(! + fzm))qa&) (27)

for the e1genstat,es of the related action opf:rators I 7 and 12, respectively. Sincg the resonance
Hamiltonian A in (20) is independent of ¢f, the quantum Hamiltonian H, obtained by
replacing the actions (/{, I3} as described above, commutes with 12 Consequently, each
eigensolution @, ., (¢}, @;) of H factorizes into an eigenstate {@jlna, 1} of I, and a
one-dimensional function ¢, (g)), which is a linear combination of the eigenstates {p} |m, {}
of I] " with ! fixed according to (23):

N : : _
Bna(0}) = mexp(l(t +dr)wl) }:cmcxp(lms;ol). (28)

The functions ¢, ;. #1 € Z are eigenfunctions of the one-degree of freedom Hamiltonian
H; ,,2(11,(0,), the restriction of H on the corresponding eigenspace {#s,I} of 12 This
Hamiltonian is obtained when specifying the action /; according to quantum condition
(23) and then replgcing the remaining coordinates (/}, ¢]) by the corresponding quantum
operators. Since Hj,, is periodic in ¢; with period 27/s it couples only those Fourier
components with indices differing by multiples of s. This is the reason why the
eigenfunctions adopt the special form (28) (see alsg [71).

More generally speaking, the spectrum of I-_h,,,z has a band structure due to the
periodicity in g}. In our notation, the quantum number #, indicates thebandandi = 1,...,s
counts the states in the band. In general, however, this spectrum depends on the action I;.
Moreover, the quantum number { is determined by quantum condition (23). In this way,
the quantization condition for /] selects a series of states one from each band.

The two-dimensional eigensolution finally adopts the form

1 , ¥ . .
Py ina (91, 01) = 5 exp (l(nz +={+ %m))w&)ew(l(f +3m1)el) D cexplimsgi) .
(29)
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By inserting the coordinate transformation (14), one can easily verify that this function
fulfils the Bloch boundary conditions in the original angle variables @y, ;. as implied by
the quantum condition (5} for f; and /3.

3.3. Time-periodic systems

So far owr treatment is general for two-dimensional autonomous systems with rotational
motion in one direction. Now we specialize to the particular case of one-dimensional time-
periodic systems, As shown in section 2 the quasi-energy function Hp of an integrable time-
periodic system written in action-angle variables has the particular form Hy = () + wl.
Thereby, the action I is a function of (p, q,¢) alone (see (5)), whereas I; depends on the
mementum p; canonical conjugate to time. The perturbation H,(p, g, ¢) does not depend on
13, due to this construction of the action variables and the resulting integrable approximation
(20) to the quasi-energy function has the form

H(L, T2y 1, 02) = h(1) + €Hi(D, 01, 02) + 0 (30)
= W) + HITL & @) + o, — g-wl{. 31)

After averaging over the fast variable ¢, one is again left with a separable Hamiltonian
AUl L, ¢) = a(r) - %wl{ eI @) + wll = Hull, @) + ol (32)

Consequently, the quasi-energies of the corresponding quantum Hamiltonian are
superpositions of two independent terms. I E, , are the eigenvalues of Hj,, we find,
after inserting (23),

,
Eny by = Enpt +ha);(i + L) 4 heon, (33)

In this way, the quasi-energy spectrum is reduced to the band spectrum of a single (!) one-
degree of freedom Hamiltonian with additional rational shifts of w. Besides the Brillouin
zone structure generated by the term fiwng, one finds a global energy shift ket r/4s in the
case that the global motion is not rotational {i; 7% (). Moreover, the s states [ = 1,,,., 5 in
each band are shifted by helr/s. These shifts by multiples of fuw/s are due fo the boundary
conditions in the rotating coordinate frame and may not be mixed up with splittings in the
energies E,,, which superimpose the shifts of fiw/s in the quasi-energy spectrum. In the
case of 5 degenerate energies E,,; in a band #; one finds an equidistant series of quasi-
energies with spacing fuo/s, giving the impression of a ‘finer’ Brillouin zone structure.

The splittings of the states in a band of an s-periodic potential can be understood as
a result of tunnelling through the barriers of the petential. This physical interpretation
is provided by a uniform WKB theory, which is obtained by considering complex-valued
action integrals through potential barriers and applying matrix techniques [23,24]. Within
this semiclassical theory approximate formulae for the width of energy gaps and energy
bands have been derived.

We recommend here, in particular, the work by Connor ef al [24], where, in addition
to a general theory for 2z /s-periodic potentials, a detailed analysis of the particular case
of the Mathieu equation can be found. This equation is of special interest in the context of
dynamical resonances, as will become clear in the following section.

For a given problem it might be hard to find the analytic form of the integrable
approximation H, to the Hamiltonian. This is, however, not the intention of the present
work. We rather want to show how—independent of the underlying system-—data drawn
from the actual classical dynamics can be used to computie quasi-energies and to understand
the influence of a classical resonance on the quasi-energy spectrum in detail.
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4. The pendulum approximation

As shown in textbooks of dynamics (see, e.g., [1,5]), the integrable approximation of the
resonant Hamiltonian is a ‘pendulum’ for sufficiently small perturbation. This result is
derived in two steps. First, it is argued that the Fourier amplitudes in (19) generally fall off
exponentially with the order m such that it is sufficient to use terms up to first order:

H = Hy+¢€Hpp+2c¢H_,,cossp, . (34)

Here, the origin of the angle ¢| has been chosen such that the fixed-point positions defined
by 8H /8¢’ = 0 are located at ¢ = 0 and 7/s for elliptic and hyperbolic fixed points,
respectively. In addition, there are s copies of each of these fixed points at positions shifted
by multiples of 27 /s. The next step is to expand this Hamiltonian in f{ about the value
1| 4 fulfilling the resonance condition, i.e.
B _3Ho_rofy_ . r. o -
9 n, Ll 5 9 s
In lowest order, 1] ; is thus the location of the fixed points in the action direction. Since
df{/dt = ofe), an expansion in /| corresponds to an expansion in ¢ of the same order.
Expanding Hp to second order in Af{ = I{ — I7 , and keeping the Iowest-order term in ¢
and Aly, one obtains

H = Eo(I{ o) + G(ALY*/2 — F cos s} (36)
with
Eqg(l] ) = Hy+ € Hop (37)
8% H
Gl ) = =3 38
( E.U) ali"l , ( )
1.0
F(l1g) =€eH_ (1] g} (39)

In general, these parameters implicitly depend on the second action 7], which has to be
specified by the quantization condition (23). The Hamiltonian H in (34) is that of a
pendulum, however, depending on sg| rather than ¢|. By rescaling the angle ¢] this
difference to the usual pendaium can be removed. For the guantum treatment, however,
this would require an adjustment in the Bloch boundary conditions, To avoid this, we
prefer to deal here with the Hamiltonian (36) as it stands. Hence, the phase space of this
Hamiltonian consists of a band of s copies of the pendulum phase space (see, e.2., [1]).

One finds s elliptic fixed points located at (Al ¢}) = (0,04 j2x/s}, j=0,...,5—1,
and s hyperbolic fixed points at positions shifted by 7 /s in the angle relative to those of
the elliptic points. The librational motion around the elliptic fixed points is separated from
the outer rotational motion by separatrices intersecting at the hyperbolic fixed points. It is
convenient to introduce the parameters

R =(F/G)'? and wo = s(FG)'2, (40}

The eigenvalues of the stability matrix are then found to be e*'®* for the stable fixed point
and e for the unstable fixed point. This means that ey appears both as the frequency
for linear oscillations arcund the elliptic fixed points and as the positive stability exponent
of the hyperbolic fixed point. The two separatrix branciies are described by the formula

15 (¢}) = 2R cos (Sspi)} + 1] 4. (41)
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The ‘size’ of the resonance defined as the symplectic area enclosed by the two separatrix
branches I{""(qa;) is given by

g
a=a7 -4 = [ )~ oD = 16R. “)
-7
Furthermore, the resonance is located at
ro_ b -
Ho=7—(AT+47). (43)

Within the uniform approximation as described in the previous section, the eigenvalues of
the corresponding quantum Hamiltonian H are obtained by inserting the action operator

A} = ~irdy (“4)

into (36) and solving the resulting eigenvalue equation Hy = Eg, which can be written in
the Mathieu form

¢" +{a —2gcossp))p =0 (43)
with
2sR ,
a=——(E — Eo(I{ o)) and g = (R/h)?. (46)
it wo
The boundary conditions for the solutions are (compare (28))
P2 (9) + 27 /5) = exp(i27 (! + S0’} /5) b, al0}) (47)
with
Ly’ = (§uy + I o/R) mod 1. (48)

This—in general fractional—Maslov index g is obtained when the quantum condition (22)
is expressed in terms of Al{ rather than /{. The boundary condition (47) can be satisfied
for the characteristic values a,, s, where ny =0, 1,2, ... is the band number, As is easily
verified, shifts in the action by multiples of # do not affect the spectrum. They only shift
the quantum number {. So we have taken fiu’ modulo 1 in (48) without loss of generality.

The idea is to approximate the real system in the vicinity of a resonance by a pendulum in
order to use the solutions of the resulting Mathieu equation, i.e. the pendulum eigensclutions,
as approximations for the eigenvalues and eigenfunctions of the real Hamiltonian. The
mapping of the eigenvalues includes, however, 2 semiclassical approximation due to the
transformation to action-angle variables which is the starting point of the resonance theory.
In the following, we show how the required parameters can be completely obtained from
the classical dynamics. This is possible without performing a transformation to action-angle
variables, since all data used are canonical invariants. One should keep in mind that the
phase space of the real dynamics is four-dimensional, being reduced to three dimensions in
the integrable approximation by averaging over the fast variable. What is mapped onto the
two-dimensional pendulum phase space is not the full dynamics in three dimensions but the
restriction on the subspace specified by quantization condition (22) for 1.

There are four parameters which have to be determined. Two of them, the location
1] o and the size A of the resonance, determine the Mathieu equation with the boundary
conditions uniquely (see (42), (46) and (48)); the other two, the frequency wp and the
constant energy term Eq(/{ o), are needed to transform the characteristic values a,, s of the
Mathieu equation into eigenvalues of the Hamiltonian (see equation (46)). In detail, our
proposed method for determining these parameters from the classical dynamics works as
follows.
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e The determination of the areas A" and A~ below the upper and the lower separatrix,
respectively, yields the position /|, (43) as well as the size A (42) of the resonance
which determines the parameter R (22). If the system under consideration is integrable
or the chaotic layer surrounding the separatrix is small, the areas can be obtained by
computing upper and lower invariant tori very close to the separatrices. For generic
KAM systems, this will not be possible because of the stochastic layer produced by the
transversal intersections of the stable and unstable manifold. In this case the theory
of MacKay et al [17,18)] can be applied showing that even for resonances, where the
manifolds do not join smoothly building separatrices, an ‘area’ of the resonance can still
be defined. This area is computed as the action difference between homoclinic orbits
and the hyperbolic periodic orbit {see the appendix).

e The frequency wyp can be obtained by a stability analysis of either of the periodic
orbits, i.e. computing the stability matrix and determining the stability exponents by
diagonalization. This stability analysis also allows us to localize the fixed points
precisely, which is a prerequisite for determining, in patticular, the action of the orbits
with high accuracy.

e The constant term Eg(f{,) in (46) can be calculated by utilizing the invariance
of integrals of the Poincaré-Cartan form along closed paths under cancnical
transformations. In the rotating coordinates we find for the action of the periodic orbits

S5 = f 1jdp) + Iydgs — Hdt
po

=sQaly— TH) (49)

where + and — refers to the hyperbolic and elliptic orbit, respectively, and the period
of the periodic orbit is sT with T = 2x/w,. Relation (49) is valid in the integrable
approximation where these periodic orbits appear as equilibria, ie. @] is constant along
them. Using the positions of the equilibria in (36) on the other hand yields

H: = Eo(l{ )% F. (50)

Inserting this result as well as the quantized values (23} for I into (49) one finally finds

Eo({ o) = hwg(ng + :T(z + ﬁm)) — (S/sT+ F). (51)

The action of either of the periodic orbits can therefore be used for determining the
constant energy Eg(f] o). On the other hand, since (51) are two equations, Ey(1] o) can
be eliminated and the parameter F is obtained as action difference of the periodic orbits
as an alternative to the method described above. One can also use this redundancy of
information to check whether the pendulum approximation is applicable.

Now solving the first equation in (46} for E and inserting (51) we finally obtain for the
energy eigenvaloes

1 ficop
Enim == o+ f(an,,; +2g) +ha)2(m + - (z + ﬁul)) (52)
where the a,,;,.{ = 1,...,5,n € Ny are the characteristic values of the Mathieu equation

(45). Apgain, this result is valid, in general, for all two-dimensional autonomous systems
which are rotational in one direction. Whereas in this general case the parameters of the
Mathiev equation depend on the action 7;, there is only a single Mathieu equation to be
solved in the case of a time-periodic system. The frequency w, is to be replaced by the
driving frequency w of the system. In practice, the Mathieu equation is solved by a continued
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fraction ansatz for the Fourier coefficients, which is a straightforward generalization of the
algorithm described in {25].

In this way we have found a semiclassical formula for the quasi-energies within the
pendulum approximation, which uses as parameters the data of either of the periodic orbits
and the size and location of the resonance, which can also be expressed by the actions of
the hyperbolic and homoclinic orbits.

5. Quantum conditions for multiply-periodic flux tubes

In this section, we will generalize the EBK quantum conditions to multiply-periodic flux
tubes, Similar results for particular resonances in coupled oscillator systems have already
been presented by various authors [10,6,7]. Qur treatment, however, will be general for
all time-periodic systems.

The resulting quantization rules are applicable for resonance islands, which are large
compared to 4, such that quantizing tori inside the resonance islands exist. This can, in
particular, be the case for larger perturbations where a resonance treatment, as described in
the sections 3 and 4, becomes inaccurate. Resonance zones then start overlapping, giving
rise to chaotic motion. Nevertheless, elliptic fixed points often remain stable even after
resonances have overlapped, and one finds a stability island around them allowing for
quantization.

Suppose we have an r/s resonance originating from the perturbation of a torus with
Maslov indices g1 = 0 or 2 and pg = 0, as is always the case for time-periodic systems.
Each flux tube surrounding an elliptic orbit of periad s will close after s periods, appearing
as § cylindrical tubes connected in time, i.e. the stroboscopic Poincaré section at ¢, = nT
cuts the tube of length sT in s pieces of length T. Although we will, for convenience,
denote the angle parametrizing the torus in the direction transversal to the surface of section
as ‘time’, the following construction is general for two-dimensiopal autonomous systems
with Maslov index u» = 0. A generalization to different Maslov indices is straightforward.

Our basic ansatz is to write the Floquet state u(¢) as a sum over s states p"/),

u(ty =2 v (53)
i=1

each of them being the EBK wavefunction of the corresponding cylindrical tbe. Since the
cylinders are cyclically connected in time, the requirement of periodicity of u(¢) leads to
cyclic conditions for the s functions, ie. vt + Ty = Uty j = 1. 5. Hence the
sum (53) can be rewritten as
&
w(r) =) _v@+jT) (54)
=1

where v(t) is sT-periodic in time. Visually speaking, we have switched from a T-periodic
picture, where the quantization manifold appears as s cylinders, to a sT-periodic picture
where we see a tube of length s7 (see figure 2). In this way, the probiem of constructing the
T-periodic wavefunction u is carried over to the construction of an EBK wavefunction v on
this torus leading to quantization rules similar to {5). To obtain these guantization conditions
we define two paths on the flux tube according to the case of a T-periodic tube, namely a
path 3 describing a ctosed loop in the surface of section and a path y» connecting 2 point
on the torus with itself in time s7'. In the T-periodic picture we can choose between s loops
1 in the surface of section corresponding to the s islands generated by the intersection of
the torus, all of them enclosing the same area (see figure 2),



Semiclassical quantization of kam resonances 6591

t=2T t=3T

Figure 2. Resonant flux tubes surrounding an elliptic orbit of period three. The tubes are
connected in time such that they form a single tube of length 3T,

The guantization conditions are again derived from the uniqueness of the wavefunction
along a closed loop. The wavefunction v (in the T-periodic picture the s functions vY?)
have to be reproduced after going through the loop 9. Thus, the first quantization condition
is identical to the ordinary one (5) for librational motion:

he=m [ o =h(m+1)  meNp. (55)
2 N
It should be noted, however, that the action /, along path 9, has nothing to do with the
action variable used in subsection 2.4, and it is merely the form of the equation which
coincides with (5); the path ¥ is different.

The derivation of the second quantization condition requires more care. Although there
are no turning points in time, and the path y» hence has no folds in the time direction,
the global motion of the flux tube itself can generate loops if it is twisted around a central
periodic orbit. The path p» has to follow this global motion, as sketched in figure 2, The
rotational or librational character of the global motion is specified by a Maslov index u,
counting the number of folds on the original perturbed torus in the surface of section, In
case of a r/s resonance, the flux tube of length s generates rpy folds, and the second
quantization condition hence has the form

1 h
15:21'[_5‘[ pdq+p,dt=}-(n’2+ﬁru[) (56)
w2

The number of loops can also be regarded as the number of times the path touches the—in
general complicated—caustic generated by the dynamics on the flux tubes. Splitting up the
quantum number into n5 = nys +Ir,1 € {I,...,s5}, n2 € Z, which is always possible if
r and s are coprime, equation {36} coincides with the quantum condition (23) derived in
subsection 3.2. Replacing p; by ¢ — H one obtains

1 r
Ensdimy = _ﬁf w! +hw;(! + du1) + hwny (57)
¥z
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after solving the resulting equation for &. Each quantizing torus, specified by the path p
and indicated by #,, provides a series of 5 equidistant quasi-energies with step size hw/s.
Comparing (57) with the result (33) one finds that this series of s states corresponds to s
degenerate states in a band n,| of the effective one-dimensional Hamiltonian with energy

1
Eﬂ,.I=Em=“ﬁfwl £=1,...,S. (58)
Yz

This is not surprising since we constructed the wavefunction as a superposition of s tube
wavefunctions neglecting tunnelling between them. In general, however, the s energies
E, ;1 will not be degenerate but show a level splitting which is due to dynamical tunpelling
[13] between the s cylinders.

The practical computation of the energies is completely analogous to the case of 7-
pertodic flux tubes, as described in section 2. The integral of the Poincaré~Cartan form is
again transformed into an integral over the path y and a classical trajectory leading to

En, = hoy(m + 1) = (L) (59)

where (L) is the Lagrangian average over the flux tube of fength sT and the frequency «;
is the winding number on the torus multiplied by the driving frequency.
Writing the sT periodic wavefunction v as

Un, i,np () = Up, (r}ei{lr/a'+nz)mr (60)
in analogy to {12), we find for the T-periodic Floguet solutions the expression
£
Un, t e (t) = (Z U'(’.{)(t)etkjirls)en(lr/‘s+nz}mr (6])
j=1

with v}’ (1) = vy, (¢ + jT)) being the wavefunction of cylinder j. The solutions &, ,(t) =
e7¥mamt/By, () of the time-dependent Schrddinger equation are then

X
cpm_,(;) = (Z U'(;Jl)(t)elkﬂrf.r)e—:&, tfh . (62)
j=l
Since these linear combinations are independent for different [, one can construct
wavefunctions of the form

WD) = e D) (63)

which are initially located on cylinder j and follow the flux tube in time.

6. Generalization to more than one island chain

Throughout the paper we have assumed, for convenience, that the island chain corresponding
to the winding number © = r/s consists of 5 islands, which are cyelically connected with
each other, which means that r and 5 are coprime. In general, however, there may be a
number £ > 1 of chains for a given winding number. This case can be included in our
treatment by allowing » and s to not be coprime, i.e. r = krp, 5 = ksg with rg, 5p coprime,
& € N. Then the total number of s islands can be divided into k groups (chains) of sg islands
each, which are cyclically connected in time by & distinct closed flux tubes of period s.
The appearance of more than one chain of islands is due to discrete phase-space symmetries
which cannot be fulfilled by a single flux tube of period sy such that rather one finds a
number & of such flux tubes which are related by discrete symmetry transformations [26].
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The generalization of our semiclassical theory to this general case is straightforward.
The starting point is the integrable approximation to the Hamiltonian which is still 2n/s-
periodic in the remaining angle variable (compare section 3). As before, this gives rise to
the introduction of quantum numbers (r, {), where ! runs over s states in each band »,.
What has to be modified in the final results are the rational shifts of ke which are added to
the eigenvalues £ ; of the one degree of freedom Hamiltonian to yield the quasi-energies
(see subsection 3.3). Splitting up [/ as ! = jso+ lo.j € Ng,lp = 1, ..., 5o, equation (33)
reads

.
Emdimg = En i + ﬁwﬁ(lo + ﬁm) + hwns . {64)

The final equation (52) in section 5 has to be modified accordingly. By comparison with
(33) one sees that actually only the common factor of & has been cancelled in the quotient
r/s and the integer rj has been absorbed by #».

Rather than s distinct shifts of multiples of hw/s the shifts are only multiples of hw/sg,
each of which appears & times in every band. The consequence is that—in the case of
s-degenerate eigenvalues F,, ;—the quasi-energies are organized as an equidistant ladder of
k-times degenerate states with step size fiw/sg.

This organization scheme is also obtained from primitive torus quanatization (section 3).
The primitive quantization rules can be applied to any of the & (non-connected) flux tubes
of period sp yielding an equidistant ladder of quasi-energies (compare (37} and (58))

‘o
Eny gy = En, +hw£(lo+ %,ul)+hwng h=1,...,5. {65)

The & flux tubes are interrelated by symmetry transformations, and the semiclassical
guantization yields & times the same result, leading to the structure described above.

The opposite extreme of the case £ = 1 is the situation where & = 5. Here we have
s flux tubes of period one (not connected cylinders) which close after a single period. In
this case one finds s degenerate quasi-energies without further rational shifts of hw since
so = I.

Solutions of the Schrédinger equation, which fall in & distinct symmetry classes, are, in
this primitive semiclassical context, independent linear combinations of the £ semiclassical
flux tube wavefunctions. In the real quantum system, one will find & almost degenerate
states due to dynamical tunnelling. Bach of these states belongs to a different symmetry
class. As Bohigas et af [27] demonstrated, this property of states associated with flux tubes
can be used to distinguish them from ‘chaotic’ states in a mixed system.

In the general case of k flux tubes of period sg, one finds 5y groups fp=1,...,5 of
k almost degenerate states in different symmetry classes. The quasi-energies in different
groups are shifted relative to each other by multiples of hiw /sy as expressed by (65).

Putting together the results, we conclude that each of the s quasi-energy states in one
band is located on each of the s cylinders independent of the value of k. In the absence
of tunneiling, a wavepacket initiaily located in one of the stability islands would follow
the corresponding flux tube with period so, ie. it would periodically show up in the sp
islands of one chain similar to a classical wavepacket. In real quantum dynamtics dynamical
tunnelling to all of the s cylinders will occur, which gives rise to splittings in the energies
Epp. l=1,....5.

We emphasize again that the splittings appear in the quasi-energy specttum only if the
quasi-energies are taken modulo w/sp.
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7. An illustrative example

7.1. The classical model
As a mode] system we consider a forced quartic oscillator

2 4
H =2 0 25 akcos(n) . (66)
2m 4

The system typically exhibits both regular and chaotic motion in coexistence, as predicted
by the KaMm theorem [16]. The Hamiltonian (66) depends on a single parameter (up to
rescaling). Here we choose units with m = b = @ = | and fix the remaining control
parameter at A = 2 x 37> ~ 0.014 2556. This particular choice of the force constant is
due to Thylwe [28], who studied periodic orbits in the clagsical model, We adopt this
parameter set since the phase space (see the Poincaré section in figure 1) shows rich
resonant island structures without large chaotic zones. This means that the resonances
disturb each other only slightiy and can hencefore be treated as isolated. Furthermore,
the smallness of the chaotic regimes avoids problems in performing primitive semiclassical
torus quantization. The most prominent resonance structures are three connected island

corresponding to winding number & = % and four islands (two pairs of connected islands)

corresponding to £ = 1.

7.2. Quasi-energies of the quantum Hamiltonian

Exact quanturn computations of quasi-energies for Hamiltonian (66) were carried out using
an Adams-Moulton predictor—corrector method [29] for & = 0.0005. For this small value
of & a sufficiently large number of states are localized in the dominant resonances such that
primitive quantization on secondary, multiply periodic resonant flux tubes can be performed.

The quasi-energy states have been ordered according to increasing values of the
expectation value of A at time zero and the number @ = 0, 1,2, ... counts the states in this
ordering. In figure 3 the values of {¢|H(r = 0)]e) are plotied versus ¢ for the first 200

Q.05 T T ¥

0.04 + /

0.03

=0)>

0.02

<H{t

.01

0 p 4 1
0 50 100 150 200

Figure 3. Expectation value (] B (t = 0}}o) for a quasi-energy state o vosus &, The plateaux
correspond to classical resonances.
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quasi-energy states. For high energies, where the oscillation is fast compared to the driving
frequency w, the classical energy H(r) becomes an adiabatic constant of motion. Thus one
expects at least for high energies (i.e. large values of o) the plot of (@[ H(r = 0)ja) versus @
to be approximately given by the classical function H (¢t = 0)(7), where [ is the invariant of
the (time-independent) system defined by Hamiltonian A (¢t = (). But also for lower values
of o the expectation value of the instantaneous Hamiltonian should—for a slightly disturbed
system—agive the comrect ordering of the states in accordance with primitive quantization.
This does, however, only apply to states allowing for primitive quantization on primary tori,
outside the resonance regions.

For states semiclassically related to secondary tori inside the separatrix the expectation
values {or|H(1 = 0)|a} should lie in the range between the classical values of H(t = ()
on the unstable and stable fixed point, H* and H ™, respectively. Since these two values
of H(t = 0} are close to each other, quasi-energy states related to a resonance form
a plateau in the plot of the expectation values, clearly visible in figure 3. Here one

recognizes two plateaus of quasi-energy states, which can be assigned to the large islands

corresponding to winding numbers Q2 = % and 2 = %, respectively. For the particular

case of the period-3 resonance, we found classical values of H¥(t = Q) = 6.97 x 1073
and H=(t = 0) = 6.18 x 10~ which coincides precisely with the range of (H(t = 0))
covered by the corresponding platean. Further plateaus corresponding to other, smaller,
islands cannot be recognized.

In figure 4 the quasi-energy angle 8, = £, 7 /h is plotted versus «. Close to a resonance
with winding number & = r/s primitive semiclassics tells us (see equation (10}) that

adjacent quasi-energies differ approximately by

Eng+lmy — Enyng N ROF/S. 67)

As a consequence, the quasi-energies appear to lie on s parallel equidistant branches having
the shape of parabolas with the minima at the resonance centre. In figure 4 this structure
appears most clearly for the resonance 2 = % at o ~ 160. Moreover, one can recognize
five parallel branches for o ~ 80 and three for o = 50, which show up less clearly. So far,
this clear organization of the quasi-energies is to be expected for an integrable system even
without resonance islands. The width of the parabolic parailel branches does not correspond
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Figure 4, Quasi-energy angles 6, = T&q /R versus ¢ for the first 200 quasi-energy states.
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to the size of the classical resonance islands but is determined by the rate of change d2/dI
of the winding number with the action, which is {up to a constant factor) the curvature of
the parabola. In the present case this function declines with the action, leading to the broad
structure corresponding to § = 1, in contrast to the smaliness of the resonance islands.
The influence of the classical resonance islands on the quasi-energy spectrum manifests
itself in deviations from these smooth curves, as is clearly visible for some guasi-energies
at the minima of the two broad parabola. The number of states showing this deviation from
the global trend is crudely determined by the area of the classical resonance. In the case

of @ = % the large resonance (again see figure 1) destroys almost completely the clear
organization of the quasi-energies on parabolic curves.

7.3. Quasi-energies related to a period-3 resonance

In the following we analyse the quasi-energies in the vicinity of the period-3 island in more
detail. Figure 5 shows the first 100 quasi-energy angles 8, = &, T /h plotted versus « as in
figure 4. This time, however, the quasi-energy angles were taken modulo 27/3 such that the
distribution of the states on the three parallel branches disappears and the typical structure
of the quasi-energies spectrum turns out much more transparently, as already suggested by
the theoratical considerations in the previous sections.

Connecting the states as ordered by o, one finds the quasi-energy angles lying on a
smooth curve with slope o(o) = 2w (Q2(a) — %), where £(a) is the winding number on
the quantizing torus for state |er). As discussed in the previous section, this ordering is
in accordance with primitive semiclassical quantization and therefore breaks down on the
separatrix. In our case we find the states up to o == 34 and from o = 60 upwards to fit
into this scheme. In between, a different ordering scheme arranges the states in a series of
triplets. This ordering can again be understood on the basis of primitive torus quantization,
but, on secondary, period-3 flux tubes in the inner resonance islands as described in section 5.
Therefore, we expect triplets of states degenerate modulo 27/3. Also, this ordering breaks
down at the separatrix and one finds the triplets breaking up in their order from n; = 6
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Figure 5. The first 100 quasi-energy angles 8, taken modulo 27/3. Encircled numbers are the
band numbers #; for a triplet of states connected by full lines. The broken lines connect states

according to their g-ordering,
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Figure 6. Quasi-energy angles 8,,; modulo 27/3 versus band nomber n;. An appropriate
rumber of multiples of 2Zw/3 has been added to the angles in order to make the systematic
increase with ny visible.

upwards. For these states, the degeneration in the quasi-energies (taken modulo 27 /3) also
starts to split up. The encircled numbers in figure 5 combining three states are the band
numbers 71 (see sections 3 and 4) obtained from the uniform quantization, which will be
described in more detail betow. This ordering in bands of three states each can be continued
across the separatrix, combining in an alternative manner two states above the separatrix
with one below and vice versa. It should be noted that the band quantum numbers (7, 1)
cannot be assigned from the pure quantum computation.

Finally, in figure 6 the quasi-energy angles ¢ (again taken modulo 27 /3) are plotted
versus the band number #;. In this plot both the global trend of the quasi-energies as well
as the systematic increase of the splittings becomes clearly visible.

7.4. Primitive quantization

Now we turn to the semiclassical quantization which was a prerequisite for arranging the
quasi-energies in bands, as shown above. First of ail, one can estimate the number of states
related to the resonance by enclosing the period-3 island as closely as possible by invariant
tori. Such tori, approximating the resonance region from below and above, were found with
areas (in units of & = 27A ~ 0.00314) of A~ = 35.3 and A" = 61.1, respectively. This
yields an upper bound for the resonance area of Agy = AT — A~ =3 x 8.6, The largest
pertod-3 torus we could find inside the resonance zone had an area of 8.3, yielding a lower
estimation for the resonance area of Ay, = 3 x 8.3, which differs from the upper one by less
than #2. According to the quantum condition /, = %{n, +3) (equation (55)) we conclude that
nine bands #; =0, ..., 8 should be related to the resonance region, where the band #; = 8
can be regarded as ‘the’ separatrix band, since the separatrix area is very close to the value
of 3 x 8.5. Tori fulfilling the condition (55} for primitive quantization on secondary, three-
periodic flux tubes, as described in section 5, can be found for #; < 7. Outside the resonance
region, states with o < 34 and @ > 60 allow for a primitive quantization on primary tori.
The algorithm for performing the torus quantization is described in detail in [16], where it
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is also shown how to include a firsi-order approximation to the quasi-energies in (10) in
case the quantum condition for the action is not perfectly met. This approximation can also
be used for extrapolating quasi-energies into chaotic regions from nearby tori. This was
done in the present example for the states in band n; = 8, approximating the quasi-energies
from both the inner and outer tori closest to the (slightly destroyed) separatrix,

7.5, Uniform guantization of the approximate pendufum Hamiltonian

As shown in section 4 one needs two parameters to determine the resulting Mathieun
equation, namely location and size of the resonance. Although the tori provide a reasonable
approximation for size and location of the resonances, an improvement is obtained when
searching for homoclinic orbits and computing their action difference from the unstable orbit
according to MacKay et af [18] (see appendix). The results for the area below the upper
and lower separatrix are {in units of ) A™ = 61.09 and A~ = 35.41, respectively, yielding
a Maslov index (see (43) and (48)) of 4’ = 3.0 and the area determining the parameter ¢
in the Mathieu equation (see (46) and (42)) is A == A" - A~ =25.68 = 3 x 8.56.

For transforming the characteristic values of the Mathieu equation into quasi-energies,
one needs two further parameters which can be obtained from the data of one of the
periodic orbits as shown in section 4. The actions of the periodic orbits were determined
to be §* = 77.57003% and §™ = 68.51471%. The winding number $2 of the stable orbit
and stability exponent A of the unstable one are € = 0.07219 and A = 0.06956. The
noticeable difference between these two values indicates that the pendulum approximation
is not perfect for the resonance under inspection. Since this resonance is quite extended
in phase space in the radial direction, the ‘centre-of-resonance approximation’, i.e. the
replacement of action-dependent parameters by their value at the resonance centre, is too
crude.

Nevertheless, we choose this resonance as a testing case for our proposed method,
in particular, since this resonance allows a primitive torus quantization very close to the
separatrix, such that both methods can be compared with their different limitations.

Since only the data of one of the periodic orbits is required (again see (52)) we performed
two independent computations using either of them. Note again that these two calculations
correspond to identical characteristic values a,, ; of the Mathieu equation (45) which are
uniquely determined by location and size of the resonance, Action and stability exponent
of the periodic orbit enter into the quasi-energies (52) as a constant and a factor, such that
the results of the two different computations are simply related by an affine transformation.
The splittings, in particular, are therefore proportional to wy and independent of the choice
of the action in (52) (see again (52)).

7.6. Discussion

The results of the different semiclassical quantizations schemes are presented in tables 1
and 2 for the bands n; =0, ..., 10 together with the resuits of the quantum calculation. In
table 2 quasi-energy angles are taken modulo 27 /3 in order to remove shifts of 27 /3, thus
making the band splittings visible, Note that the assignment of quantum numbers (11, )
is due to uniform quantization. For bands up to n; = 8 they can also be assigned from
the primitive quantization of the inner torl. The quantum numbers ¢« can also be obtained
from primitive quantization of outer tori (see the discussion in subsections 7.2 and 7.3); the

values of & were put in parentheses where no quantizing tori exist.
As expected, the primitive quantization of the inner tori yields excellent results for
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Table 1. Semiclassical quasi-energy angles 6, = &, 7 /h of primitive torus quantization and
uniform quantization by using Mathieu solutions in comparison with exact quantum results.
Quantum numbers ¢ are put in parentheses where they cannot be obtained from primitive
quantization on outer tori. Quasi-energies marked by ‘{’ are obtained by extrapolation because
the quantrzation condition could not be fullfilled within an error of 0.1%.

Primitive semiclassical Uniform semiclassical

n { o Exact [nner Outer Stable  Unstable
0 1 (37 05467 05477 0.5458 0.6191
0 2 (36 26411 26420 26401 27135
0 3 (38} 47354 4.7365 47345 4.8078
11 (@40 09816 0.9826 09218 1.0W91
12 (42) 30760 30770 3.0762 31336
i 3 (@) 51704 51714 51706 52280
2 1 (45) 13969 13984 13992 1.4414
2 2 (43) 34913  3.4928 3.4936  3.5358
2 3 (44) 55857 5.5872 55880 5.6302
31 @7y 17912 17919 17965 18243
3 2 (48) 3.8856 3.8863 3.3900 3.9187
303 (49 59800 5.9807 59853 6.0131
4 1 (32) 21627 21646 21718  2.1859
4 2 (51) 42571 42589 42663  4.2803
4 3 (500 00683 00702 0.0775 0.0915

5 1 {54y 25087 25111 25225  2.523%
5 2 (55) 46028 46055 46165 4.6178
5 3 (36) 04143 04167 04279 0.4292
6 1 (58 28233 2.8283 28415  2.8311
6 2 (53) 07295 0.7339 0.7491 07387
6 3 (57) 49212 49227 49399 49294
7 1 (9 31137 33372 3.1400 3.1187 .
7 2 (46) 5.1841 54316 5.2085 5.1882
7 3 (59 10098 12428 1.0316  1.0109
8 1 60 32938 350617 3.2188¢ 33214 3.2935
8§ 2 6l 54723 5.6005t 54819 55044  5.4733
8 3 35 12333 141177 115087 12633 1.2341
9 1 33 3.6563 3.6545 3.6763  3.6356
9 2 3 5579 55626 56076 5.5721
9 3 &2 1.4476 1.4369 1.4935 14560

0 1 32 37117 3.7050 37742 37298

0 2 64 5.9955 5.9918 6.0788 60268

0 3 65 1.7743 1.7671 1.7819  1.7339

the lower bands n;, which show degenerate triplets when taken modulo 27/3. As
this degeneration breaks up markedly, the deviations from the quantum results increase
systematically from 1 x 1073 for low values of a; to 2 x 10~} for n; = 7 and 8.

For the results of the primitive quantization on primary torl outside of the separatrix,
we find a comresponding increase of accuracy with #), i.e. when moving away from the

separatrix.

As already mentioned above, one cannot—for the resonance under consideration—
expect the uniform method to yield precise results for all quasi-energies, since the underlying
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Table 2. Same data as in table 1, taken however modulo 2x/3,

Primitive semictassical Uniform semiclassical

n I« Exact Inner Quter Stable  Unstable
0 | (37 05467 05477 0.5457 0.6191
0 2 {36) 05467 05477 0.5457 06191
0 3 (38) 05467 05477 05457 0.6191
I 1 (40) 09816 09826 0.9812 10392
1 2 (42 09816 09826 0.9818  1.0392
1 3 {(41) 009816 0.9826 09818  1.0392
2 1 (45) 13969 13984 1.3992  1.4414
22 (43 13969 13984 13992 1.4414
203 (44) 13960 13984 13992 14414
3 1 @n 17912 17919 17965  1.8243
32 (48) 17912 17919 1.7965  1.8243
3003 (49) L7912 17919 1.7965  1.8243
4 1 (57 00683 00702 0.0775  0.09i5
4 2 (51) 00683 0.0702 0.0775 0.0915
4 3 (500 0.0683 0.0702 0.0775 0.0815
5 1 (54) 04143 04167 04281  0.4294
5 2 (55} 04140 04167 04271 04290
5 3 (56) 04143 04167 0.4279 04292
6 1 (58 07289 07339 0.7471  0.7367
6 2 (33 07295 07339 07491  0.7387
6 3 (5T 07324 07330 07511 0.7406
7 1 (3% 10193 12428 1.0456 10243
7 2 (46) 09953 (2428 10197  0.9994
7 3 (59 1.0098 12428 1.0316  1.D109
8 [ 60 11994 141170 1.1244% 1.2270
g8 2 6l 12835 1.4117°  1,2931 13156 12845
8 3 35 12333 L4170 L1508 12633 12341
9 1 33 15619 1.5601 15819  1.5412
9 2 34 1.3903 1.3738 14188 13839
¢ 3 & 1.4476 1.4369 14935  1.4560

01 32 16173 1.6106 16798  1.6354

10 2 &4 1.8067 1.8030 1.8900  1.8380

10 3 65 1,7743 17671 17819 1.7339

pendulum approximation is too crude. However, using the data of the stable periodic orbit
yields the quasi-energies in the lower bands, which are semiclassically localized on tori close
to this fixed point, with the same accuracy as the primitive torus method (= 1 x 10~*). For
higher bands the quast-energies are overestimated when using this data set.

Using the data of the unstable fixed point instead, one finds the quasi-energies in high
bands (in particular n; = 7 and 8) recovered with high accuracy, whereas those of low bands
are markedly overestimated. Note, in particular, that the quasi-energies of band n; = §—the
state which is, according to our estimates of the resonance area, ‘the separatrix state’—are
predicted with the very high accuracy of 1 x 1073, This is the same limit of accuracy found
in the primitive quantization of the degenerate states in the lower bands and seems therefore
to be of inherently semiclassical origin for this model.

For states definitely outside of the resonance, i.e. #; 2 9, the accuracy of the uniform
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method declines with #;. This is, however, the region where the primitive quantization (on
primary tori} again works very well.

We conclude that the uniform quantization of the pendulum approximation yields very
good results for states close to the separatrix (7, = 7 and 8) when using the data of the
unstable periodic orbit and also in the case that the pendulum approximation is rather crude.
The splittings of the quasi-energies are in any case obtained with high accuracy, since they
are not very sensitive to the parameter chosen (they are, for example, independent of the
action used in (52)). On the contrary, primitive quantization fails for these states since
tunpelling has not been taken into account. But primitive quantization works very well
where the uniform method based on the data of the unstable orbit becomes inaccurate,
namely for states outside of the resonance and close to the stable orbit.

8. Concluding remarks

We have presented a uniform semiclassical theory of quasi-energies in the presence of
accidental resonances based on essentially the same ideas as used by Uzer ez al [6], Ozorio
de Almeida [7], and other authors. Our presentation, however, is general and independent of
the particular form of the action-angle variables in the unperturbed system. An application to
one-dimensional time-periodic systems unfolds and explains the structure of the quasi-energy
spectrum in the vicinity of a r/s-resonance, reducing it to the spectrum of a one-dimensional
(time-independent} Hamiltonian of period 2m/s with additional shifts of integer multiples
of haw/s.

In a primitive torus quantization of secondary, multiply periodic flux tubes, the
organization of the quasi-energy spectrum turns out most clearly yielding bands of quasi-
energies which are degenerate modulo hew/s. This primitive quantization represents the
limiting case that dynamical tunnelling between the flux tubes is negligible.

Uniform approximations to the quasi-energies, which yield additional splittings of quasi-
energies due to tunnelling, are obtajned by mapping the resonant dynamics onto a pendulum
and solving the resulting Mathieu eguation for pendulum eigenstates. We have shown
how the parameter of this equation can be obtained from classical dynamics, without any
algebraic manipulations of the Hamiltonian. This makes our method applicable to a general
class of systems. The confinement to systems which are rotational in one direction is only
due to our interest in time-periodic systems, where the application of our results turns out
nicely. The generalization to systems with Maslov indices gy # 0 is straightforward.

A determination of the relevant parameters is based on the data of the ‘essential® orbits
in the resonance zone, the stable and unstable periodic orbit as well as homoclinic orbits.
This limited set of orbits is sufficient to compute all quasi-energies related to a classical
resonance. Since this data set is redundant within the pendulum approximation one can
also check the quality of the pendulum approximation based on these data. Moreover, we
have demonstrated that even in the case that the pendufum approximation is rather crude,
quasi-energies of ‘separatrix-states’ can be computed with high accuracy using the data of
the unstable orbit.

A further step in a generalization of this method will be to use the redundant data to
obtain two further coefficients in a higher-order expansion of the resonance Hamiltonian.
This means taking into account further Fourier coefficients of the resonance Hamiltonian or
expanding the Fourier coefficients to a higher order in the action. In any case, the derivation
of the formulae for the additional coefficients in the resulting differential equation in terms
of classical data is straightforward. The resulting differential equation, however, will be
more general than the Mathieu equation.
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An interesting option offered by the uniformization is a pertubational treatment of small
resonances by utilizing an expansion of the characteristic values of the Mathieu equation in
terms of the parameter g, which is given by the area of the resonance. Such a treatment,
already presented by Voth [9] for the particular case of coupled oscillators, will shed light
on the influence of small resonances on the quasi-energy spectrum, thus quantifying the
naive picture that resonance islands influence the spectrum only if their phase-space area is
small compared to k. Such an analysis, however, has not been included in this work and
will be published elsewhere,

A further interesting point is to test our method in the case that there is a chaotic layer
around the (destroyed) separatrix which is larger than in the example studied here. The
determination of resonance area and Jocation by use of the action of homociinic orbits as
described in the appendix allows the application of the present semiclassical method to this
case without further complications. Therefore one can study the influence of the destroyed
separatrix on such states, in particular the transition to the case where the flux through the
separatrix becomes larger than k.
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Appendix. Area below destroyed separatrix from action difference according to
MacKay ef ol [17, 18]

Even for a destroyed separatrix, a resonance area can be defined by constructing a partial
separatrix from segments of stable and unstable manifolds. These segments are joint in
a homoclinic orbit, which approaches the unstable fixed point in both time directions. In
general, there are two different homoclinic orbits, the so-calied minimum orbit and the
minimax orbit. The area under the partial separatrix differs according to the selection of
the orbit in which the segments are joint. The difference between these two areas measures
the flux through the destroyed separatrix (see the schematic illustration in figure Al). Note,
however, that the area under the partial separatrix does not change under iteration; the ftux
through the separatrix is the same in both directions. MacKay et al {17] introduced the term
turnstile to describe this motion through the separatrix. The turnstile is thereby formed by
the two enclosed areas on both sides of the minimax orbit (see again figure Al).

Let x}: ,hn=1,..., 3 be the iterates of the unstable fixed point under the Poincaré map,
i.e, the intersections of the periodic orbit and x,, n € Z, the iterates of the homoclinic point
on the upper separatrix. This means that in the positive time direction the homoclinic point
slides to the right on the stabie manifold of the fixed point, ie.

Xy —> x5 oo i=l...s (Al)
and slides to the left in the negative time direction on the unstable manifold:

x;+,s—>xf J— — i=1,...,8. (A2)
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Figure Al. Phase-space area below separatrix branches. (a} A non-destroved separatrix:
branches of stable and unstable manifold are joined smoothly forming the separatrix. Any point
of the separatrix is homoclinic to the unstable fixed point (example shown by dotted points).
(b) Destroyed separatrix: branches of stable and unstabie manifold intersect transversally,
intersection points being homoclinic orbits. The resonance area {(dark shaded) is given by
the action difference between the unstable periodic orbit and the minimum homoclinic orbit
(full circles) Flux through the destroyed separatrix (light-shaded area) is given as the action
difference of the minimum and minimax {open circles) homoclinic orbit.

The integral

{(n+13T
S(xn, Xpe1) = f Lx(r), x(2),¢)dt (A3)
nT

of the Lagrangian L over one period along an orbit is the generating function for the Poincaré

map, Le.

380k, Xau1)
ax,

_ IS (xy, Xnp1)

X1 @B

n nt+l =
Therefore, the integral [ pdg over a segment of the stable manifold can be rewritten as an
infinite sum of action differences between iterates of the homoclinic point and the unstable
fixed point. The result for the area below the separatrix, built by two segments as described
above, 1s then an infinite sum

¥

o0
AT =5 Y 3 (SCets Xyerer1) = Sy Xy i) (A5)
j=—o0 =1

which converges exponentially fast. The expression for A~ is identical except for the sign,
since the homoclinic orbit moves in the opposite direction.

In the practical computation, we followed the proposal of MacKay et af [18] to use a
symmetry in the surface of section in order to reduce the problem of finding homoclinic
orbits to a one-dimensional search problem. The ‘minimax” orbit is, in general, lying on
the symmetry line. Therefore one starts a point close to the fixed point and shifts it in the
unstable direction until the point is lying on the symmetry line after a predetermined number
Jj of iterations. This number of iterations is limited by the numerical accuracy and can be
estimated from the instability of the orbit and the number of digits in the computation. How-
ever, since the sum (A5) converges exponentially with j, a small value of J is, in practice,
sufficient; in owr case the value of the action difference converges after about 30 periods.

The iterates of the second, the ‘minimum’ homoclinic orbits, are lying between those
of the ‘minimax’ orbit. The °‘minimum’ homoclinic orbit has therefore no iterates on
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the symmetry line, but is symmetric with respect to reflection on the symmetry line. It
can therefore be found by a similar algorithm. The action difference between these two
homoclinic orbits measures the flux through the (destroyed) separatrix. In the present case
this action difference turns out to be negligible, which indicates that the separatrix is only
slightly damaged, as already noticed.

For further detail we strongly advise the reader to study the work by MacKay ef al
17, 18]
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